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Abstract and group of classe§iji) a flexible enough subtyping relation for
nested class-types, afig) a group-polymorphism mechanism.

In spite of a few attempts such as [3, 19], languages supporting
scalable extensibility are currently based on dependent type (or
class) systems, like JX [23], Scala [25], gbeta [12]. There,

Much recent work in the design of object-oriented programming
languages has been focusing on identifying suitable features to
support so-called scalable extensibility, where the usual extension

mechanism by inheritance works in different scales of software tod 1 dth h tricted st of L
components—that is, classes, groups of classes, groups of group§'es ed types are accessed throug (a restricte Seto ) Expressions:
as on one hand this schema is rather expressive, it forces the

and so on. Mostly, this issue has been addressed by means of de to take int i hat orth | "
pendent type systems, where nested types are seen as properties gfogrammer 1o take into account somewhat orthogonal aspects

objects. In this work, we seek instead for a different and possibly SUS! asdimrqu:jatéility of.field_ls_handhvariables—sle(e Secgon 5 Lor
simpler solution, retaining the Java-like approach of nested typesa more detalled discussion. Though current works are devoted to

as properties of classes. We introduce the mechanismamdnt identify simple core calculi for languages with dependent types—

path typeswhich provides a flexible means to intra-group relation- SUch @s for Scala angbeta [9, 13]—such languages are typically

ship (among classes) that has to be preserved through extension™re complex than the standard Java setting, and more difficult to

Featuring the new notions ekactandinexact qualificationsthese manage. Itis therefore i_nt_e_resting to eva!uate v_vhether (and to \.NhiCh
types also provide rich abstractions to express various kinds of set€Xtent) scalable extensibility can be achieved in a language without
of objects, thanks to a flexible subtyping mechanism. We formalize dependent types. . o . .

a safe type system for variant path types on top of Featherweight ' [17], we started approaching this issue by seeking a minimal
Java. Though a full study of applicability and expressiveness is on- St Of features for supporting family polymorphism as proposed in
going work, our development currently results in a complete solu- [11] in the context of the Beta-style virtual classes [20], that is,
tion for scalable extensibility, similarly to previous attempts based Scalable extensibility at one level of nesting.

on dependent type systems. I . .
Our Contributions In this paper, we develop this approach a step

) further, supporting intra-group inheritance and arbitrary levels of

1. Introduction group hierarchies. This is achieved through a new typing construct,
Background Much recent work in the design of object-oriented which we namevariant path types. Starting from [17], this con-
struct first extends the conceptrefative typego work in a deeply

programming languages has been focusing on identifying suitable p .
features to support extensibility not just for individual classes, but NeSted structure. Generalizing the notiorMyTypeandMyGroup

also for groups of classes, groups of groups and so on. This re-IN [2, 3], such types can express self_ reference and mutual refer-
search direction is meant to make object-oriented languages meefNCe among _classes In a group, which h_ave to be pres_erved by
the requirements a$calablecomponent-based applications: since group extension. In add!tlon to them, we introduce two kinds of
a reusable piece of code (namely, a component) can be imple_quallflcatlons—the notation to access a nesteq Dol a ty_pe)
mented as a group of cooperating classes, it would be useful "Side the class of a type—which can be used in combination at
to apply the traditional mechanism of inheritance to groups of any level of ”es“.“geX?Ct(T@D) andlnexactqqahﬂcatlonst._D).
classes. Researches on family polymorphism [11], higher-order Yhile exact qualification supports safe family polymorphism (or
structures [12], nested inheritance [23], and grouping mecha- bma_ry m?‘thOdS in a broad sgnse) by restricting sut_)typlng, inexact
nisms [3, 19], all share this common goal, which we shall refer to qualification recovers subtyping by_ restricting poss_lbly unsafe bi-
asscalable extensibilitythe term coined in the work by Nystrom nary methods. Thereby, t_hey prqwde ”.Ch abstracyons to express
et al. [23]. In particular, for an object-oriented language support- Yarous kinds of set of objects with flexible subtyping. The name

ing scalable extensibility, a number of features must be provided, va'nant comes from the facts thafi) the t‘.NO kinds of qualifi-
namely:(i) a mechanism for nesting classes at an arbitrary Igijel, ~ Calions can be seen as operators that, given a pathTyfeke
an inheritance construct seemlessy working for both single classes? (Io;_al) class name and yield typesrec andT:C respectlvely,
and (ii) such operators have variance properties concerning sub-

typing/subclassing similarly to variant parametric types [18] (a.k.a.
wildcards [28] in Java 5.0 [14]). More specifically, exact qualifica-
tions act as invariantT@D is a subtype off@E only whenD = E;
and inexact qualifications act as covariantb is a subtype of .E
whenD extend<t (inside the class of typ€).

Our technical contributions can be summarized as follows:

1This name was derived from the metaphor of a nesting hierarchy of classes
[Copyright notice will appear here once 'preprint’ option is removed.] as a directory structure in a file system.
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e introduction of the notion of variant path types for safe scalable
extensibility; and

e formalization of a core language & (extending Feather-
weight Java [16], or simply FJ) with a sound type system of
variant path types.

Full potential of the expressiveness of variant path types and appli-
cability to mainstream languages like Java are to be fully explored,

yet. Though, variant path types are interesting for they support safe
extensions of groups in a rather simple setting, and can then be
considered as starting mechanism to achieve a lightweight form of
scalable extensibility.

Rest of This Paper After Section 2 describes the basic framework
of classes with arbitrary level of nesting, Section 3 introduces
the informal syntax and semantics of variant path types, mainly

by means of examples. Then, Section 4 develops the formal core

calculus Fgan Finally, Section 5 discusses related works, and
Section 6 provides concluding remarks.

2. Class Nesting and Extension

In this section, we briefly review how the notion of groups and their
extension provide scalable extensibility, considering a simplified
setting without static types.

2.1 Grouping Classes by Nesting

class AST{
field root;
class Expr extends Object{
method toString(){ return ""; }
method equal(e) { return false; }

class Literal extends Expr {

field val;
method toString(){ return val; }
method equal(e) { return this.val == e.val; }

class Plus extends Expr {
field opl, op2;
method toString(){

return this.opl.toString()+
"+"+this.op2.toString () ;

}
method equal(e) {
return this.opl.equal(e.opl)
&& this.op2.equal(e.op2);

}
method replaceOpl(e) { this.opl = e; }

class ASTeval extends AST {
class Expr extends Object{
method eval(){ return 0; }

class Literal extends Expr{
method eval(){ return val; }

class Plus extends Expr{

method eval(){
return this.opl.eval() + this.op2.eval();

Like in previous approaches such as JX [23], we see a class as }
both a mechanism to generate objects and one to group classes. } ¥

Considering the “graph” example [11], by a class definition of the
kind
class Graph{

class Node{
field edges;

}

class Edge{
field src, dst;
method connect(nodel, node2) {
) src=nodel; dst=node2;

}
method createGraph(..){..}

we define agroup of classes: classé®de andEdge are called
memberclasses of thgroup classGraph. (In order to concentrate

on the semantics of groups and their inheritance, in this section

we will use keyword€ield andmethod for field/method declara-

tions.) To denote a nested class, we rely on the familiar notation of

C1.Cz. -+ .Cp, Which can be used e.g. to create instances out of
member&dge andNode as in the following code:

new Graph.Edge(..);

var e =
= new Graph.Node(..);

var n

(Again, we use the keywordar for variable declarations.) A new
instance of membeZdge (Node) inside clas$raph is assigned to
variablee (n).

A key idea of scalable extensibility is to extend the usual class
extension mechanism to allow to inherit not only fields and meth-
ods but also member classes, which carfuréher extendedFor
example, by the definition of the new group cla¥§raph (a class
for graphs of colored nodes and weighted edges) below

class CWGraph extends Graph{

class Node {
field color;

}
class Edge {
field weight;
method connect(nodel, node2) {
weight = .. ;
super.connect (nodel, node2);
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Figure 1. Simple Expressions

}
}
}

CWGraph inherits methodcreateGraph() and member classes
Node andEdge; furthermore, those member classes are extended si-
multaneously with new fields and methods suchalsr, weight,

and overridingconnect (). Hence, an instance 6#Graph.Edge

has three fields:

var e = new CWGraph.Edge(..);
e.weight .. e.src .. e.dst ..

This extension mechanism is meant to work at any level of depth
in the structure of nesting. Braph.Edge itself defines member
classesA and B, then CWGraph.Edge.A and CWGraph.Edge.B
automatically inherit from the original versions sfandB inside
Graph.Edge.

In standard single-inheritance languages such as Java and
Smalltalk, the “complete” definition of a subclass is obtained by
composing all of its superclasses by taking overriding into account.
Here, the complete definition of a class is obtaineddnursively
composing enclosing classes from the top level down to the leaf of
the nesting hierarchy [10]. For example, the complete definition of
CWGraph is obtained by composing@bject, Graph andCWGraph
in this order; it composeBode andEdge in Graph with those in
CWGraph, resulting in the expected group of classes.

2.2 Extension inside Group

As discussed elsewhere [12, 23], it is reasonable to expect members

of a class to extend another class. In particular, it would be useful to

allow a member class to extend from another in the same group to

express the so-called expression example [23, 27], as in Figure 1.
The group clasaST has classes&iteral andPlus for con-

crete syntax tree nodes that extend a member of the same class
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Expr. Each member class is equipped with methoftring () to

return a string representation of an abstract syntax tree. In an exten-

sionASTeval of AST, each member class is extended wittal ()
for evaluation. As in the previous exampkSTeval .Plus inherits
fields op1 andop2 from AST.Plus. This schema seems to natu-
rally lead to a multiple inheritance scenari8Teval .Plus actu-
ally inherits fromASTeval . Expr andAST.Plus, and both of these
inherit from AST . Expr—thus leading to a typical diamond struc-
ture. Notice that, while inheriting fromSTeval .Expr is explicit
through theextends clause, inheriting fromST . P1lus is implicit,
as itis due to the enclosing group extension.

As argued also in Nystrom et al. [23], however, we can avoid
problems that typically happen in ordinary multiple-inheritance

languages by hierarchical, recursive composition described above.

To obtain a complete definition ®flus in ASTeval, for example,
the top-levelASTeval is first composed withAST, resulting in

member classes each of which is composed with the member class

of the same name inST. Then, the complete definition efLus is
finally obtained by composingxpr andPlus in the composed
ASTeval. As a result, priority is given to properties implicitly
inherited rather than to explicitly inherited ones.

Note that in general, deeper nesting structures might lead a class
to inherit from more than two classes, but the above discussion

naturally extends to such cases, as formalized in Section 4.

3. \Variant Path Types

Built on top of this language fragment with class nesting and
hierarchical composition, we introduce variant path types that allow
to flexibly express a number of interesting relationships between
classes in a group.

3.1 Absolute vs. Relative Path Types

The ability to automatically inherit member classes (in general a
whole structure of nesting) is not sufficient per se to provide a
true scalable extensibility mechanism in a statically typed setting.

class Graph {
class Node {
“This.Edge[] es=new "This.Edge[10];
int i=0;
void add("This.Edge e) { es[i++] = e; }

}
class Edge {
“This.Node src, dst;
void connect("This.Node s, “This.Node d) {
src s; dst d;
s.add(this); d.add(this);

Tﬁis.Node startNode;
boolean containsNode(This.Node n){..}
boolean containsEdge(This.Edge n){..}

}
class CWGraph extends Graph {
class Node {
Color color;

class Edge {
int weight;
void connect("This.Node s, ~“This.Node d) {
weight = f(s.color, d.color);
super.connect(s, d);
3

}

Figure 2. Graph andCWGraph Classes

understood as first going Ugtimes in the nesting structuré {s the
number of “”), and then going down through path . Co
Going back to the graph example, the intra-group relation-
ship betweerEdge and Node is expressed by makinBdge us-
ing type “This.Node, which meansraph.Node in the class of
Graph.Edge, andCWGraph.Node in the class oCWGraph.Edge
Figure 2 shows a complete graph example written in our lan-
guage. Here, nodes hold a reference to the array of edges of type
“This.Edge and edges hold two references to source and desti-
nation nodes of typeThis.Node to express they are from the
same kind of graph. In the clas@Graph, types of those fields are

If some relationship exists between members inside a group, e.g.,inherited as written in the superclass and they now reféde

in Graph we have that instances of memb&ige should hold
a reference to an instance of memiblede, then we want it to

and Node in CWGraph. This example clarifies the need to disal-
low cross-group references: metheennect () invoked through

be preserved through extension, that is, the same relation mustCWéraph must take two instances @WGraph.Node, otherwise

automatically hold in clas€WGraph as well. More concretely,
we may require instances Gfraph.Edge to hold references to
instances ofGraph.Node, and instances ofWGraph.Edge to

hold references to instances OfiGraph.Node, as also argued

accessing fieldolor on them would fail.

As seen in previous section, relative path types are coupled with
types of the kindc; . - - - .C,—which we callabsolute path types
since they denote a certain class independently of the position

in Ernst [11]: in other words, cross-group reference such as an Where such a type is used.

instance ofCWGraph.Node being a source node @fraph.Edge

A natural way to exploit the class structure seen above through

must be disallowed. However, a naive type system as in Java fails @PSolute types is as follows:

to express such an invariant: if we declate anddst to have type
Graph.Node, then those fields would be inherited with the same
type, resulting in cross-group reference.

To express such relationship, we introduce a new kind of types
called relative path typeq17], which refer to other classes in
a “relative” way from the class where that type appears (as in
relative path expressions in the UNIX file system.) Examples of
relative path types arghis, This.A, This.A.B, “This, ~"This,
“This.A. Type This means “the current class"—it is found in
other languages [23, 4] with a different name suctMg3ype[2].
Analogously, typeThis.A means “membed inside the current
class”, andrhis.A.B “memberB inside membe# inside current
class”. Type This means “the group of the current class” (or “the
enclosing class of the current class”), typ&rhis “the group of
the group of the current class”, and so on. Finallfhis.A is
“memberA inside the group of the current class”, which is a type

Graph g = new Graph(..);

éraph.Node n = g.startNode;

CWGraph.Edge e;
CWGraph.Node n1,n2;

é.connect(nl, n2);

Notice that the type oftartNode is declared to b&his.Node
and accessed through the absolute path tgpeph yields
type Graph.Node by substituting the receiver typ&raph
for This. Similarly, the argument types of.connect() be-
comesCWGraph.Node by replacing~This in the declared type
“This.Node with CWGraph, which is a prefix of the receiver type
CWGraph.Edge.

3.2 Exactness for Type Safety

used by a class to denote a member of its same group. A generalt is very well known that scalable extensibility suffers from the

form ~---"This.C;.C2. --- .C, Of relative path types is hence
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subtyping” of mainstream object-oriented languages, it is not safe at the head can be considered an exact qualification over the top

to use typeThis (and some other relative path type) in certain
places such as a method argument type.

In our graph example, although cla@#Graph inheritsGraph
and clas€WGraph . Node implicitly inherits fromGraph . Node, as-
suming naivelyCWGraph to be a subtype ofraph or similarly
CWGraph.Node to be a subtype dfraph.Node will break sound-
ness of the type system as the following code reveals:

Graph.Node nl

= new Graph.Node(..);
Graph.Node n2 =

new Graph.Node(..);

Graph.Edge e = new CWGraph.Edge(..);
e.connect(nl,n2); // Unsafe call

Graph g = new CWGraph(..);
Graph.Edge e2 = g.startNode.es[0];
e2.connect(n1,n2); // Also unsafe

Since the code fragment above is trying to connébiGraph . Edge
to two Graph. Nodes, the call toconnect () causes the attempt to
access fieldcolor to a node of typesraph.Node, which does
not have it! Actually, a similar situation occurs only by allowing
subtyping betwee@WGraph andGraph as the last three lines show.

level, or package. An inexact qualification over the top level can
be omitted for syntactic analogy with Java, writing eA§T . Expr
instead of. AST.Expr. ( In the formal calculus introduced in the
next section, even “the top level” will be made explicit as the
symbol / and, for exampleAST.Expr will be formally written

/ .AST .Expr.)

The intuition behind a type likeeA.B is as “the common
supertype of all the members that exterglsinside classA”
(eA@B included). So, typ@AST.Expr is a common supertype of
QAST@Expr, @AST@Literal, and @AST@Plus. Similarly, A@B is
read as “the common supertype of memben the groupA or its
subclasses™@A®B included). SOAST@Expr iS a common supertype
of @AST@Expr and@ASTeval@Expr but not@AST@Literal. Fig-
ure 3 shows the subtyping hierarchy for abstract syntax nodes. The
name “variant path types” comes from the two kinds of qualifica-
tions, which introduce different variance with respect to the simple
class name after qualification: syml@écts as invariant-£aD is a
subtype ofT@E only whenD = E—and . acts as covariantD is
a subtype off . E whenD extend<E (inside the class df).

Now, dots in relative path types are also considered inexact qual-

To solve this problem, some language mechanism is required ification: for instanceThis.B would be “the common supertype

to ensure that the classes ©fn1, andn2 are members of the
same group. The solution adopted in JX relies on what they call

of all the members that extendsinside the current class”, and
“This.B “the common supertype of all the members that extends

dependent classes and immutable variables—see Section 5 for & inside the enclosing class”. Thus, typeis.Expr used inside
detailed discussion. We instead rely on a simpler solution of exact the code of clasaST would denote the set of all nodes of the cur-

types [5, 3, 4], briefly reviewed below.

rent version of abstract syntax tree. NawT with type annotations

An exact type denotes instances of a single class, excluding anycan be written as follows:

of its subclasses, thus also plays a role of run-time types of objects.

We might use the tentative notati@(A) to mean an exact type
corresponding to the class designated by the absolute pathtype
for example, exact type(Graph.Node) consists only of instances
of classGraph.Node. On the other hand, a typ@raph.Node,
which is said to bénexact includes instances of claSsaph . Node

and its subclasses, explicit or impliéitA method taking a rel-
ative path type such asonnect () cannot be invoked on inex-
act Graph.Edge, as we do not know whether an actual instance
belongs to the grougraph or CWGraph. Thus, invocation of a
method taking a relative path type is allowed only when the re-
ceiver type is exact; the argument type obtained by replatting

(or ~-- - ~This) will also be considered exact. In this senteis
(possibly with~) is always exact.

By using exact types, the type system can reject the example

above: invocation otonnect () on inexact typeGraph.Edge is
prohibited. If the type ot were declared to be(Graph.Edge) SO
thatconnect () can be invoked: the assignment

@(Graph.Edge) e = new CWGraph.Edge(..);

before the invocation would be prohibited beca@é@raph . Edge)
is nota supertype of (CWGraph.Edge). (Expressionaew will be
given exact types since the class is known.)

3.3 Exact and Inexact Qualifications and Subtyping

In the above sectiorg was treated as an operator to absolute path
types. However, in our setting, we have found that it is more natural
to consider tha® is rather a new kind of qualification in addition
to ., in order to control the degree of exactness in a more fine-
grained manner! So, for clagsST.Expr, say, variant path types
now feature four kinds of types: fully exacttype @ASTQ@Expr
(which was writtene (AST . Expr) above),partially inexacttypes
.AST@Expr and @AST.Expr, and usual. AST.Expr. We call the
“dot” inexact qualificatiorand the ©” exact qualificationHere,@

2Note that the same notatioG#aph . Node” is used sometimes to denote
a singleclassnamedNode nested inGraph and sometimes to denote an
inexacttype
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class AST {
class Expr {..}
class Literal extends Expr{..}
class Plus extends Expr{
“This.Expr opl, op2;
String toString(){
return this.opl.toString()
+ "+" + this.op2.toString();
}

boolean equal(This e){
return this.opl.equal(e.opl)
&& this.op2.equal(e.op2);
}
void replaceOpi("This.Expr e) {
this.opl = e; return;

}
}

Since type@AST.Expr is a common supertype to all kinds of
expressions ofST, it is clear from the substitutability principle that
it should provide a more restricted access to its methods and fields
than@AST@Expr. In this case, sincequal () takes a relative path
typeThis, it cannot be invoked 0@AST . Expr as the receiver type
is not exact. However, a method taking a relative path type may
be invoked on a (partially) inexact type. For example replaceOp1()
requires the argument to be any expression (hence ineEapt)
that belongs to the same group (hem@&his). So, this method
can be invoked on botAST@P1us and @AST.Plus. The rule of
thumb is that a method taking a relative path type can be invoked
when the type replacing- - - “This is exact: in this case,This in
“This.Expr is replaced with exad®AST, a prefix ofeAST.Plus.

Remark: One might want to useThis@Edge and “This@Node
rather than"This.Edge and “This.Node in the graph example
above. The choice would not matter in this particular code because
nested classe®de andEdge do not have a binary method (such as
equal () taking an argument of typehis). If Node hadequal(),
invoking it inside connect () on s or d would be prohibited be-
cause the type is (partially) inexact. In such a case, their type must
be ~This@Node, which is fully exact.
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AST .Expr

T A =
QAST. Exprrr AST@Expr @ASTeval. Expr
@ASTEExpr < - QASTevalCExpr
@AST@Literal @AST@OPlus @ASTeval@Literal @ASTeval@Plus

\\‘M*#\M—é_,#ﬁ/

Figure 3. The rich subtyping hierarchy for the expression example. Dotted arrows represent subtyping while solid arrows represent
inheritance, which isot subtyping.

3.4 Parametric Methods for Group-Polymorphic Methods so that the instantiation of type variables can be automatically

One of the central ideas in family polymorphism [11] is that it nferred—itis left for future work.

should be possible to develop functionalities that can work uni-

formly over different families. Recasting it to our framework, it 4. Formalizing Variant Path Types
means that we should be able to write methods accepting as formal

arguments instances of members of the same group, where differen{irynh'asssgcé'r?qg’llv‘é%IZ”Cna"?giﬁ;hg;ﬂggsgf]%zgé%egAngggtﬂﬁuz?shstec'
invocations may be concerned about different groups. it g

AS an example, we consider he methaimecci110 trat A 16) Whal e model et ol nested dasses wih -
takes as input an array of edges and two nodeangfgroup (of P ' P Ypes, P

graphs) and connects each edge to the two nodes. We achieve it b)gds only with exact type variables, as well as the usual features of

. : ; J, that is, fields, object instantiation, and recursionthys. In
adding parametric methods in the style of Java 5.0 to our language, 7’ ' ! o N
but with new features oéxact type variablesvith qualification. FJa, a nested class can extend eithbyect, which is an empty

More concretely, methodonnectAl1 () is written as follows: class, or another class in the same group, though some other lan-
' ’ guages [19, 23] allow a more liberal style of inheritance. We drop

<exact G extends Graph> typecasts since one of our points is to show scalable extensibility
static void connectAll(G@Edge[] es, is possible without resorting to typecasts, which are used to get

for (int i: es) { GONode n1, GONode n2) { around restrictions imposed by a naive type system. We assume
es[i].connect (nl1,n2); every type variable to be exact for simplicity and hence drop the

) exact keyword; non-exact type variables would be easy to add.

Method connectAl1() is defined as parametric in an exact type 4.1 Syntax
variableG—which represents the group used for each invocation— The abstract syntax of types, class declarations, method declara-

with upper-boundraph; and the arguments are of typeEdge [1, tions, and expressions is given in below. Hetds a natural num-
G@Node andG@Node, respectively. It can be invoked as follows: ber (0 or positive integers); the metavariableandD range over
. (simple) class nameg;andY range over (exact) type variabless;
@GraphQEdge es = .. 1 :
@Graph@Nocgle grﬁ 2= T, U, andV range over type:s,f and g range over field names;
@CWGraphQEdge[] ces = .. ; ranges over method names; anchnges over variables.
@CWGraph@Nod 1=.,cn2=.; .
raphtiode cn o A = /|AeC run-time types
<@Graph>connectA11(ge(35, gnl, gn2);) ;; 0K E == /|X"|EeC exact types
<@CWGraph>connectAll(ces, cnl, cn2); 0K - n
<@Graph>connectAll(ces, gnl, gn2); T u=/ ‘ X | TeC | T'C, o _ types
// compile-time error L &= class C<C{Tf; LM} classes
<Graph>conne<;tAll§ces, gnl, gn2); M = <X<T>T m(T X){return e;} methods
// compile-time error e u= x|e.f|e.<E>m(e) |new A(e)  expressions
In the first invocation of the example code, instantiatiorg efith Following the custom of FJ, we put an over-line for a possibly
@Graph is specified, hence edges and nodes of faiyph can empty sequence. Furthermore, we abbreviate pairs of sequences in
be passed, and similarly in the second invocatiorCi@raph. The a similar way, writing T £;” for “T1 £1;...; Tn £,;", where
third invocation is not well typed, as:s has typeCWGraph@Edge, n is the length ofT and £, and “this.f=f;” as shorthand for
which does not belong to the gro@@raph. (In other words, it is “this.f;=f1;...;this.f,=f,;” and so on. Sequences of field
not a subtype ofdGraph@Edge.) Finally, the last one is not well declarations, parameter names, method definitions, nested class

typed, either, since an inexact tygeaph is passed to an exact definitions are assumed to contain no duplicate names. We write
type variable. Notice that the introduction of exact type variables is the empty sequence as denote the length of a sequence using

crucial: connect () is allowed to be invoked in the method body | - | and concatenation of sequences using a comma. Unlike the
exactly for the reason that is an exact type and, if the fourth  previous section, we make the top level explicit/as the formal
invocation were allowed, it would lead to unsoundness. syntax but we often abbreviat@C to @C and/.C toC.

Finally, as developed in our previous work [17], a type inference Run-time types, which represent classes from which objects
mechanism can also be designed by extending that in Java 5.0,are instantiated, are also called absolute path types, while types
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starting withx™, which corresponds to.. “X (with ~ n times) in brevity. Here, there is no condition @andEg’ for the composition
the previous section, are called relative path types. Here, we extendto be well defined but, in a well-typed prograknis expected to be
the prefixing operation frorhis to all type variables. Also note  a subclass of’.

that for notational convenience we use absolute path typessfor The definition of functiorclasse$a) is in Figure 4: the first rule
expressions and names of classes. A qualification of the éarin says thaObject has no nested classes and the secondAtiat
called exact while C is called inexact. In particular, a type without  the top-level. The third rule means that nested classa®dnare
any inexact qualification is called an exact type, ranged oveR by obtained by composing nested classegim classe$A) with those

as shown above. In what follows, we use the notatitrto drop in its superclasaeD. Note thatl. are also the result of composition
the lastn qualifications front; it is defined by: till the depth of the enclosing claas
0 _ T For example, consider the following fa classes:
)™ = xntm class AST extends Object {
n n— class Expr extends Object {
ET@C; = T 1 En > 8% ) T m() { return e_1; }
T.C)" = T n >

class Lit extends Expr {
Note that(-)™ is an operation on types whi" is just a syntactic
entity. By using the prefixing operation, (simultaneous) substitution
[T/X] of types for type variables is defined as follows:

class Plus extends Expr {
T m() { return e_3; }

}
ﬁ/ﬂ/ = / class ASTE extends AST {
ﬁ/ﬂxgb = T7 class Expr extends Object {
= }

[T/X](seC) = ([I/ﬂS)@C class Lit extends Expr {

[T/X](s.c) = ([T/X]s).C ) T m(O) { return e_5; }
Note thatX™ is replaced with the corresponding prefixtoMWe also class Plus extends Expr {
use a notatioexact{T) (inexac{T), resp.) to denote types in which T mO { return e_6; }

all inexact (exact, resp.) qualifications Thare replaced by exact }
(inexact, resp.) ones. We include(read “top-level”) without any
qualification mostly for technical convenience and, as seen in rules
for well-formed types and typing, by itself cannot appear in any
program texts.

A class declaration consists of its name, the simple name of c¢lass Expr extends Object {
its superclass, field declarations, methods, and nested classes. The ; mQO { return e_1; }

Then, classe$/@ASTE) returns nested class&xpr, Lit, Plus
obtained by composing ones insid8TE and its superclasssT,
ie.,

symbol < is read ‘extends.” A method declaration can be pa- class Lit extends Expr {
rameterized by type variabl& which we assume to be exact for T n() { return e_5; }
simplicity—it is easy to extend the language to inexact type vari-  ¢1ass Plus extends Expr {

ables. Since the language is functional, the body of a method is a T m() { return e_6; }
singlereturn statement. An expression is either a variable, field
access, method invocation, or object creation. We assume that theHere, method in classeAST@P1us has disappeared as it is over-

set of (type) variables includes the special variatiies (This, ridden by one in clas®ASTE@Plus, which implicitly extends
resp.), which cannot be used as the name of a (type, resp.) paramegasTeP1us.
tertoamethod. o ) ) Thanks toclassegh), it is now easy to define functions to look

A class tableCT is a finite mapping from run-time typesto up fields and methods from a given class name. The definitions

(top-level or nested) class declarations and is assumed to satisfyof lookup functions are also in Figure 4. Functifield<(T, 4),
the following sanity conditions to identify a class table with a which is similar toclasse4T, &), enumerates all field names bf

set of top-level classes: (JT(A€C) = class C .. for every (and its superclasses) with their types, which are resolved with the
AeC € dom(CT); (2) if CT(AeC) has an inner class declaration first argument, which is usually the type of the receiver. Similarly,
L of nameD, thenCT(A@C@D) = L; and (3)0bject ¢ dom(CT). mtypém, A) returns the signature of methadn A.

A program is a paifCT, e) of a class table and an expression. To Now, it is fairly easy to read off how class bodies are linearized,
lighten the notation in what follows, we always assunfieedclass i.e., in what order members are looked up: for example, methods
tableCT. of an instance ofeASTE@Lit will be searched in@ASTE@Lit,

. . -, @AST@OLit, @ASTE@Expr, @ASTOExpr in this order.
4.2 Hierarchical Composition

As discussed in Section 2, a complete definition of a nested class#3 TYPe System

is obtained by propagating composition of enclosing classes in a The main judgments of the type system consist of one for type
top-down manner. We define a functiolasse$a) to list up nested equivalencel - S = T, one for matching\ + E; <# E, one for
classes inside after hierarchical composition @f It requires the subtypingA + S <: T, one for type well-formedness - T ok, and
following auxiliary operatorL;<+L, to compose a superclass one for typingA;T" I e : T. The rules are given in Figures 5 and
with a subclas&.: 6. Here,A, calledbound environmentis a finite mapping written

class C < E{T F; L, M} <+ class C < E{U g; Lo Mo} X<:T from type varigbles?( to typesf and records declarations

_ PrE E T o= (T oeaT o\ (. eai of type variables with their respective upper bounds. Similarly,

=class C < E {T £f; U g; (Li<+L2) (Mi<+M2)} . ; 4 8 oS

T, calledtype environmentis a finite mapping writterx: T from

Here, L <+Ly denotes the set union of classes fram and Ly variablesz to T and records declarations of method parameters with
where classes of the same name are recursively composed by their respective types. As seen latarusually containghis<: T,
Similarly, M; <+M, denotes the set union of methods friimandM, in which T represents the class where the judgment is made.
where methods itz have priorities over the method of the same Following the custom of FJ [16], we abbreviate a sequence of
name inM;. Their straightforward definitions are omitted here for judgments in the obvious ways - S; < Ty, ...,A S, < T,
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classe§0bject) = o

class C < D {..L.. } € classefa)

(L are all top-level classes)
classe§/) =L

classegéaeD) =T’

classe§AeC) = L'<+L

fieldy0Object) = o

class C <« D {T f;

.. } € classe$h)

fieldsAec) = fields(AeD), T £

class C 9 D {..M } € classefh)

<XU>Sp m(S X){ .. Y M

mtypém, AQC) = <X<U>S—Sy

class C < D {..M } € classefA)

m &M

mtypém, A@D) = <X<U>S—Sg

mtypém, AQC) = <X<U>S—Sy

Figure 4. Flam Lookup Functions

—

0 A F S < T (similarly for type equivalence and matching);
AFTiok ...,A - T,0kto A - Tok; andA;T" F ey:Tq,
o AT Ren:TotoA; T He:T.

4.3.1 Type Equivalence

The judgmentA + S = T can be read “typs is equivalent tar

underA.” The first three rules say that it is indeed an equivalence
relation, and the last two that it is a congruence. The key rule is the
fourth rule, which says that if the upperbound of a type variable is

transitive and a type variable (with some prefixing) is a subtype
of (the corresponding prefix of) its declared upper bound. The
third last rule intuitively means that a type denoting a nested class
C exactly is included in a type denoting a nested clasand

its subclasses. The second last rule might look counterintuitive
since exact qualification works covariantly. Note that, however,
if T is not exact, the resulting typeeC is not exact, either. For
example@ASTeval . Expr, which includes all kinds of expressions

in ASTeval.Expr, iS a subtype o&ST.Expr, which includes all

exact, then the two types are indeed equivalent. The fifth rule meanskinds of expressions iAST and ASTeval. The last rule roughly

that if X" is equivalent to an exact tyee C, then its enclosing class
X" *! also hag and they are equivalent: for example,

X < @Graph@Node F X = X'@Node
can be derived.

4.3.2 Matching

The subtyping relation will be defined by using the inheritance
relation, which is formalized as matching here. The judgni®emt

E; <# E; can be read “exact type, matchesE;” or simply “E;
extendsE,.” So, the matching relation is defined essentially as the
transitive closure of type equivalence, as seen in the first two rules.
The third rule means that, ¥is assumed to be a subtypeTfthen

it must extendexact{T) whatever it is instantiated with. The fourth
rule is similar to the fifth rule for type equivalence: for example,
the matching judgment

This <: Graph.Node - This <# This'@Node

means that inexact types are related if one inherits the other—
matching is used in this rule.

4.3.4 Type-Wellformedness

The judgment form for well formed types is F T ok, read as T

is well formed under\.” A type is well formed when the class that
the type points to ik exists. Even when the class of a given name
is not in the domain of the class table, it may exist due to nested
inheritance, hence the functiatassess used in the last two rules.

4.3.5 Typing

The typing judgment forni" I~ e : T is read “expression is given
type T underI'.” The typing rules are shown in Figure 6; readers
who are familiar with languages with matching [2], in particular
LOOJ [4], will notice some similarities. The key rules ard-1IELD
andT-INVK. The ruleT-FIELD means that the type of field access
ep . f; is obtained by looking up field declarations from the class
that matches the receiver type. Note that,; i type is declared to

can be derived by this rule. The second last rule deals with classbe relative, thehis® will be replaced with the corresponding pre-

extension.

4.3.3 Subtyping

The judgment form for subtypindh - S <: T can be read$
is subtype ofT under A.” As usual, subtyping is reflexive and
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fix of the receiver type: for example, field§ @CWGraph@Node) =
This'@Edge edgandl’ = x : @CWGraph@Node, y : This'@Node,
then

This <: CWGraph.Node,...;I'F x.edg : @CWGraph@Edge and
This <: CWGraph.Node,...;I'F y.edg: This'@Edge.
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ALT=T AFS=T AFS=T AFT=U X<TeA T" is exact
- AFT=S AFS=U ARX"=T"
A F X" =EeC AFS=T AFS=T
AFX"=x""ec A} seC = TeC AFS.C=T.C
AFE; =Eg A FEj <#Es A Es <#E3 X<Te A
A Ej <#E AFE; <#E3 A+ X" <# exac(T")
A+ X" <# EQC AFE<#A class C <« D {.. } € classefA) A E; <#Es
AFX"<#Xx"Tlec A F EQC <# EQD A+ E10C <# EoQC
AFS=T AFS<T AFT<U X<Te A
AFS<T AFS<U AFX"< TV
AFX"< T.C
_— AFTOC< T.C
AFX"< X"t c
AFS<T AFS<T A F exacts)ecC <# exac{T)eD
A - 8@C <: T@C AFS.C<T.D
) X<TeA AFT"ok class C <« D {..} € classe§/)
A Object ok AF X" ok AF Cok
AFTok AR exac(T)<#A class C 4 D {.. } € classe$A)
A+ TeC ok
A+ Tok A+ exactT) <# A class C a D {.. } € classefA)
AFT.Cok

Figure 5. Flan Matching, Subtyping, and Type Well-formedness Rules

In this way, accessing a field of relative path type gives a relative may succeed as ifeGraph . Edge/@This' @Node]This'@Node =
path type only when the receiver is also given a relative path type. @Graph@Node. So,

The first line means that the type of the recei¥grmatches
(i.e., inherits) a class\ that has methodh with the signature ;X : @Graph.Edge, y : Graph@Node I~ x.connect (y,y) : void

<X<U>T—Sy. The second and third lines roughly mean that the . .
is derivable.

actual type arguments must be subtypes of the corresponding up- ) . .

perboundds and the types of the actual value arguments must be , _1he judgment for methods is of the fortm Mokin4, read

subtypes of the corresponding formal; the substitution is applied MethodM is ok in A." The rule T-METHOD checks whether the
method body is well typed, provided thahis is of type This

sinceU; may includex;, ..., X;—1 andT may includeX. As dis- !
cussed in the last section, binary methods can be invoked only @d that formal type and value parameters are given declared up-
when the receiver type is exact and, in general, prefiteics must per bounds and declared types, respectivBiys is bounded by
be exact. For example, assuméypeeGraphCEdge, connect) = inexacfA), whereA is the class name in which the method is de-
(Thisl@Node Thisl@Node)—> void. Then clared, since the method, which may _be inherited t.o subclasses of
’ A, has to work for any subclass af Like FJ, the signatures of
-;x : @Graph@Edge, y : @Graph@Node - x.connect (y,y) : void overriding methods must be identical with the overridden, but this
condition will be checked byf-CLAss (unlike FJ).
The judgment for classes is of the fotrL ok in A, read “class
;X : Graph.Edge, y : Graph@Node I~ x.connect (y,y) : void Lis ok inA.” The ruleT-CLASS means that a class is well formed
) . _ if (1) its superclass, field types, nested classes, and methods are all
In order to express this condition, we use another substitution oper-\ye|| formed: (2) it extend©bject—in other words, there is no
ator[T/@X], which require™ in T be replaced with an exacttype.  cycle in the inheritance relation: (3) defined methédsorrectly
The definition, which is omitted here, is derived from thafBfx] override ones inherited from the superclass; and (4) nested classes
by imposing a side conditionT? is exact” on the second clause. T, correctly override those inherited from the superclass. For the
Thus,[Graph.Edge/@This|This'@Node is not well defined, mak-  condition (4), another judgmehtL overrides. in A is introduced
ing the second judgment above non-derivable. Note that, even if and it is checked by the second last rule of Figure 6 that methods in

should be derived but not

the receiver typeT, contains inexact qualificationTo/@This] L and classes further nestedicorrectly override those i Note
thatL; in the rule T-CLASS are not necessarily class definitions
3 This requirement is essentially the sameractness preservati¢ad]. in the class table; rather, they are obtained by combining nested
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AT Ex:D(x) (T-VAR)
AT Hep:To A F exac{To) <# A fielddA) =T £ (T-FIELD)
A;T Feo.f;: [To/This|T;
AT Fep:To Ak exactTo) <# A mtypédm, 4) = <X<U>T—S,
AFEok AFEc< [E/X][To/@This|U
A;THe:8  AFS< [E/X][To/@This|T (T-INVK)
A;T Feo.<E>m(@) : [E/X, To/This|So
AF Aok  fieldgag) =T £ A;THe:S A+ S < ([Ao/This]T) (T-NEW)
A;T Fnew Ag(e) : Ao
Vi € 1..[0|.(This<:inexacfA), X1 <: Uy, ..., X;—1<:U;—1 = U; 0K)
A = This<:inexacfa),X<:U
At To, T Ok Aj;this : This,x: The:So A Sy < Tp (T-METHOD)
F <X<U>To m(T X){ return e; }okina
F L overridesL’ in A
- A@D; <# A@D,
for any<X<U>So m(S ©{..} €N,
if <Y<U'>8’o m(S" P {.. } € ¥, thenX/Y](T,80,5') =T, S0, S
for anyD € (dom(L) N dom(L’)), - L(D) overrides.’(D) in AQC
Fclass C <Dy { T f; L M }overridesclass C <Dy { Ug; L' W}inA
F AeC’ ok I AQC’ <# Object
This<:inexacfAeC) - T ok F L okinaeC F Mok inAeC
for any<X<U>So m(S x){..} €N,
if mtypem, AeC’) = <Y<U'>S'—S¢’, then[X/Y](U’,So’,S') =T, So, S
classegreC’) =L
for anyD € (domL) N dom(Ls)),+ L(D) overridesL, (D) in A@C (T-CLASS)
Fclass C< ¢ {Tf; LMZ}okina
Figure 6. FJan Typing Rules
classes in all superclasses bfC. Also, Ls are extended by so we also need the obvious congruence rules (if— e’ then
implicity—the extends clauses of do not refer td.s; this is why e.f — ¢&'.f, and the like), omitted here. We write—* for the
valid method overriding is checked inL overridesL’ in A. reflexive and transitive closure ef—.
4.4 Operational Semantics field(a) =T £ (R-FIELD)
The operational semantics is given by the reduction relation of the new A(e).fi — e
forme — &', read “expressiok reduces ta’ in one step.” We
require another lookup functianbodym, 4), of which we omitted mbodym, A) = <X>(X) eg
the obvious de_f|n|t|9n, for the _method body with formal (type) I .u A(3) .<E>m(d) — [d/X, new A(S) /this|[E/X, A/This|eo
parameters, writterX> (%) e, of given method and class names. (R-INVK)
The reduction rules are given below. We wiféggx, e/y]eo for
the expression obtained from by replacingx;, with 44, ..., %,

with d,,, andy with e. There are two reduction rules, one for field 4> Type Soundness

access and one for method invocation, which are straightforward. The type system is sound with respect to the operational semantics,
The reduction rules may be applied at any point in an expression, as expected. Type soundness is proved in the standard manner via
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subject reduction and progress [29, 16]. For brevity, we omit the Notice thatX plays the role oh.class in the JX code. Following
proofs, which will appear in a full version of the paper, which how connect_all() is written is Section 3, it can also be written
will be available athttp://www.sato.kuis.kyoto-u.ac.jp/ <exact X extends Graph>
“igarashi/papers/. void make_loop(X@Node n, X@Edge e) {..}

The set of values, mentioned in Theorem 2, are defined by:

v ::= new A(¥), wherev can be empty. We believe that separating type variables gives more intuitive

method signatures, especially when parametric types are involved;
for example, ifconnect_all (), which takes arrays, is to be written

. . ) ) ,
THEOREM1 (Subject Reduction)if ;0 - e : T ande — &', in JX, the method definition seems to be something like:

then®; 0 - &’ : T/, for someT’ such that) - T’ <: T.
void connect_all(final Graph g,
. . i g.class.Edge[] es,
THEORIIEMZ (Progr/ess)lf ?;0 + e : Aande is not a value, then S Clase Node[l ne) €.}
e — ', for somee’.

or

id t_all(final G h . Ed, s
5. Related Work vold comnect-all(final Graph Edge e

Nested Inheritance. The present work has emerged as an en- Graphle.class].Node[] ns) {.}

hancement of language constructs for lightweight family polymor- which requires avalue parameteg or e, which isnotrequired by

phism [17], with arbitrary levels of nesting, explicit inheritance be- the method body.

tween nested classes in the same group, and generalized relative One consequence of this design of JX seems that, as opposed to

path types with inexact qualification. The resulting language design the common understanding, subtyping donesquite imply substi-

is very close to Nystrom et al.'s JX language [23], though without tutability, which we think is not very intuitive: if an expression in a

exploiting dependent types(/classes). program is replaced with another, which is of a subtype of the orig-
JX supports an extension mechanism called nested inheritanceinal, the program can become ill-typed. For example, suppose class

that allows an inheritance hierarchy to be nested in another classC, which has the subclags has metho@qual () that takes an ar-

and such a hierarchy to be inherited and extended by extendinggument of typethis.class. Then,c.equal(c) would be well

the enclosing class, just as our proposal. Indeed, it is very similar typed under the assumption thahas typeC. SinceD is a subtype

how class definitions are composed. Moreover, JX allows a class toof C in JX, one might expect thatof typeD would be substitutable

extend another class outside the group. for c and sad.. equal (c) would be also well typed but, in fact, it is
Key ideas in their type system are dependent classes and prenot. In our type system, subtyping is substitutability thanks to the

fix types. Dependent classes are type expressions of the formdistinction between exact and inexact qualificationsiqual (c)

x.class, which meang’s run-time class. Using dependent classes, is allowed only wherc is given an exact typ@C and it can be

a methodequal would take an argument of typghis.class, replaced only by another expression of the same exact type.

which guarantees that the run-time classes of the receiver and More recently, Nystrom, Qi, and Myers [24] have extended

the argument agree. Prefix types are usually used with dependentlX to support the mechanism called nested intersection, which is

classes to express an enclosing class of a dependent class. Faimilar to symmetric mixin composition in Scala [26, 25]. It would

example,Graph [n.class] meansn.class’s innermost enclos- be interesting future work to add nested intersection ta:J

ing class, which is a subclass@faph. By combining the fact that

inheritances considered subtyping, they are useful when two argu-

ments have to share the same enclosing classasmitect_all()

as in Section 3. For example, here is its varigaite_loop () writ-

Matching. A series of work [2, 7, 6, 4] by Bruce and his col-
leagues has been addressing statically safe type systems for lan-
guages with the notion dflyType(corresponding t@his in this

; paper). As we have also discussed, even if one class extends an-
tenin JX : X
. . other, the object type from the former is not always a subtype of
void make_IOOP(gmii}l1 [Grall>h~Ni>dEdn: y ¢ that from the latter due to binary methods—methods whose argu-
n.src = n.dst = 5, ossiondee € ment types includélyType Instead of subtyping, they introduce

the matching relation on object types, which reflects the class hier-
archy and plays an important role in typechecking binary methods.
1n the language called OOM [6], the notion ofhash typesof

the form#T is introduced#T behaves as a common supertypé

all types that matcltT but binary methods cannot be invoked on
it. Our inexact qualification can be considered a generalization of
hash types in the context of nested classes. It may be worth noting
that in some other languages of theirs [5, 3, 4], hash types are “de-
fault” (requiring no special symbols such #sand objects types

on which binary methods can be invoked are called exact types and
written @T.

JX’s static type system guarantees that the actual arguments’s run
time types share the same enclosing class, which must be a sub
class ofGraph. Since inheritance is subtypingyWGaph.Node is a
subtype ofcraph.Node and sanake_loop() can be invoked with
CWGraph.Node andCWGraph.Edge. Since types now refer to ex-
pressions, the interaction with side-effects gets rather tricky; JX
poses the restriction thatclass can be preceded only by a se-
quence of zero or more accesses of final fields to final variables
(including this) to avoid the meaning of the same dependent class

expression changes' at dlfferent program points. That's wify Also, they have introduced match-bounded polymorphic meth-
_(and must be) qu_al|f|ed witltinal. Although we do not formal- ods [7] to describe generic methods that work on different types
Ize assignments in ab we expect thay can be easily and safely that match the same interface. Polymorphic methods in this paper
added with the usual typing rule. . can be viewed as match-bounded polymorphic methods in disguise,
Instead of dependent classes, we use type variablegtaid tsince if an exact typ& is a subtype o, thenE matchesexactT).

to achievg the sepa_ration of types and expressions for ease %'our choice is mainly for the sake of familiarity and uniformity with
typechecking. In particular, we observe that value arguments of JX usual subtype-bounded polymorphic methods.

also play the role of type arguments. It will be more apparent by
comparing with the definition afake_loop () in our language: 4 Subtyping is not explicitly mentioned in their paper but there are typing

<exact X extends Graph.Node> rules to convert from one (exact) type to its hash version and from a hash
void make_loop(X n, “X@Edge e) {..} type to another hash type which is matched by the former.
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Later, the notion oMyTypeis extended from self-recursive ob-  some degree in previous work [17]. Implementation issues are also
ject types to mutually recursive object types, resulting in the notion left for future work but we believe that the techniques described in
of MyGroup[5, 8, 3]. Here, mutually recursive classes are put in Nystrom et al. [23] can be applied to our proposal, as the semantics
a group, which is extensible just as classes, Biyroup which of inheritance of our language is similar (in fact, simpler).
changes its meaning along group extension, is used to express mu- i . e .
tual references among classes. In this paper, groups and classes afcknowledgments. We thank Vincent Siles for finding bugs in
unified into a single mechanism of classes, which can be arbitrar- Proofs and helping us prove a fixed lemma and anonymous review-
ily nested. AccordinglyMyTypeand MyGroupare unified into a ers for useful comments. The fII’S.t authpr wou]d like to thank mem-
relative path typ@his”. be_rs of the Kumiki project for fruitful dlscu_ssm_ns on thls s_u_bject.

Concord [19] is another language that also has the notion of This work was sypported in part by Grant-in-Aid for SC|ent|f|clRe.-
groups andMyGroup A main difference from the present work is search on Priority Areas Research No. 13224013 and Graint-in-
that Concord does not support nesting of groups but allows a classAid for Young Scientists (B) No. 18700026 from MEXT of Japan
in a group to extend an absolute type, a class outside the enclosing!garashi), and from the Italian PRIN 2004 Project “Extensible Ob-
group. It would be interesting future work to extend our language J€ct Systems” (Viroli).
to allow a class to extend non-siblings.

Virtual Classes. Historically, virtual classes [20] (more precisely, References
virtual patterns) in Beta [21] have been very influential to much  [1] David Aspinall and Martin Hofmann. Dependent types. In Ben-
work on the design of languages that support scalable extensibility ~jamin C. Pierce, editordvanced Topics in Types and Programming
by using nesting structure of classes. The basic idea of virtual Languageschapter 2, pages 45-86. The MIT Press, 2005.
classes is to allow classes to be attributes of objects just as methods, [2] Kim B. Bruce. A paradigmatic object-oriented programming
by putting nested class definitions in another class and those nested  language: Design, static typing and semantimairnal of Functional
classes to be inherited and further extended in a subclass. Although ~ Programming 4(2):127-206, April 1994. Preliminary version in
the original proposal was not statically type-safe, virtual classes PI?PLt 19.93; u dnder the title Slafe type checking in a statically typed
are useful to describe not only generic data structures but also object-oriented programming fanguage-.
mutually recursive classes such as nodes and edges of graphs and[3] Kim B. Bruce. Some challenging typing issues in object-oriented
their extensions. languages. InProceedings of Workshop on Object-Oriented
Ernst, who coined the term “family polymorphism,” improved ?ﬁ;’g:ggg?’gO%VO?Dg?m%es 82 ofElectronic Notes in
Beta’s static analysis in the development of the languggea to puter scieny ‘
ensure the safety of the use of virtual classes as extensible mutually [4] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into
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