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Abstract
Much recent work in the design of object-oriented programming
languages has been focusing on identifying suitable features to
support so-called scalable extensibility, where the usual extension
mechanism by inheritance works in different scales of software
components—that is, classes, groups of classes, groups of groups
and so on. Mostly, this issue has been addressed by means of de-
pendent type systems, where nested types are seen as properties of
objects. In this work, we seek instead for a different and possibly
simpler solution, retaining the Java-like approach of nested types
as properties of classes. We introduce the mechanism ofvariant
path types, which provides a flexible means to intra-group relation-
ship (among classes) that has to be preserved through extension.
Featuring the new notions ofexactandinexact qualifications, these
types also provide rich abstractions to express various kinds of set
of objects, thanks to a flexible subtyping mechanism. We formalize
a safe type system for variant path types on top of Featherweight
Java. Though a full study of applicability and expressiveness is on-
going work, our development currently results in a complete solu-
tion for scalable extensibility, similarly to previous attempts based
on dependent type systems.

1. Introduction
Background Much recent work in the design of object-oriented
programming languages has been focusing on identifying suitable
features to support extensibility not just for individual classes, but
also for groups of classes, groups of groups and so on. This re-
search direction is meant to make object-oriented languages meet
the requirements ofscalablecomponent-based applications: since
a reusable piece of code (namely, a component) can be imple-
mented as a group of cooperating classes, it would be useful
to apply the traditional mechanism of inheritance to groups of
classes. Researches on family polymorphism [11], higher-order
structures [12], nested inheritance [23], and grouping mecha-
nisms [3, 19], all share this common goal, which we shall refer to
asscalable extensibility, the term coined in the work by Nystrom
et al. [23]. In particular, for an object-oriented language support-
ing scalable extensibility, a number of features must be provided,
namely:(i) a mechanism for nesting classes at an arbitrary level,(ii)
an inheritance construct seemlessy working for both single classes
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and group of classes,(iii) a flexible enough subtyping relation for
nested class-types, and(iv) a group-polymorphism mechanism.

In spite of a few attempts such as [3, 19], languages supporting
scalable extensibility are currently based on dependent type (or
class) systems, like JX [23], Scala [25], orgbeta [12]. There,
nested types are accessed through (a restricted set of) expressions:
as on one hand this schema is rather expressive, it forces the
programmer to take into account somewhat orthogonal aspects
such as immutability of fields and variables—see Section 5 for
a more detailed discussion. Though current works are devoted to
identify simple core calculi for languages with dependent types—
such as for Scala andgbeta [9, 13]—such languages are typically
more complex than the standard Java setting, and more difficult to
manage. It is therefore interesting to evaluate whether (and to which
extent) scalable extensibility can be achieved in a language without
dependent types.

In [17], we started approaching this issue by seeking a minimal
set of features for supporting family polymorphism as proposed in
[11] in the context of the Beta-style virtual classes [20], that is,
scalable extensibility at one level of nesting.

Our Contributions In this paper, we develop this approach a step
further, supporting intra-group inheritance and arbitrary levels of
group hierarchies. This is achieved through a new typing construct,
which we namevariant path types1. Starting from [17], this con-
struct first extends the concept ofrelative typesto work in a deeply
nested structure. Generalizing the notion ofMyTypeandMyGroup
in [2, 3], such types can express self reference and mutual refer-
ence among classes in a group, which have to be preserved by
group extension. In addition to them, we introduce two kinds of
qualifications—the notation to access a nested classD (as a type)
inside the class of a typeT—which can be used in combination at
any level of nesting:exact(T@D) and inexactqualifications (T.D).
While exact qualification supports safe family polymorphism (or
binary methods in a broad sense) by restricting subtyping, inexact
qualification recovers subtyping by restricting possibly unsafe bi-
nary methods. Thereby, they provide rich abstractions to express
various kinds of set of objects with flexible subtyping. The name
“variant” comes from the facts that:(i) the two kinds of qualifi-
cations can be seen as operators that, given a path typeT, take
a (local) class nameC and yield typesT@C andT.C respectively;
and (ii) such operators have variance properties concerning sub-
typing/subclassing similarly to variant parametric types [18] (a.k.a.
wildcards [28] in Java 5.0 [14]). More specifically, exact qualifica-
tions act as invariant:T@D is a subtype ofT@E only whenD = E;
and inexact qualifications act as covariant:T.D is a subtype ofT.E
whenD extendsE (inside the class of typeT).

Our technical contributions can be summarized as follows:

1 This name was derived from the metaphor of a nesting hierarchy of classes
as a directory structure in a file system.
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• introduction of the notion of variant path types for safe scalable
extensibility; and

• formalization of a core language FJpath (extending Feather-
weight Java [16], or simply FJ) with a sound type system of
variant path types.

Full potential of the expressiveness of variant path types and appli-
cability to mainstream languages like Java are to be fully explored,
yet. Though, variant path types are interesting for they support safe
extensions of groups in a rather simple setting, and can then be
considered as starting mechanism to achieve a lightweight form of
scalable extensibility.

Rest of This Paper After Section 2 describes the basic framework
of classes with arbitrary level of nesting, Section 3 introduces
the informal syntax and semantics of variant path types, mainly
by means of examples. Then, Section 4 develops the formal core
calculus FJpath. Finally, Section 5 discusses related works, and
Section 6 provides concluding remarks.

2. Class Nesting and Extension
In this section, we briefly review how the notion of groups and their
extension provide scalable extensibility, considering a simplified
setting without static types.

2.1 Grouping Classes by Nesting

Like in previous approaches such as JX [23], we see a class as
both a mechanism to generate objects and one to group classes.
Considering the “graph” example [11], by a class definition of the
kind

class Graph{
class Node{

field edges;
}
class Edge{

field src, dst;
method connect(node1, node2) {

src=node1; dst=node2;
}

}
..
method createGraph(..){..}

}

we define agroup of classes: classesNode and Edge are called
memberclasses of thegroupclassGraph. (In order to concentrate
on the semantics of groups and their inheritance, in this section
we will use keywordsfield andmethod for field/method declara-
tions.) To denote a nested class, we rely on the familiar notation of
C1.C2. · · · .Cn, which can be used e.g. to create instances out of
membersEdge andNode as in the following code:

var e = new Graph.Edge(..);
var n = new Graph.Node(..);

(Again, we use the keywordvar for variable declarations.) A new
instance of memberEdge (Node) inside classGraph is assigned to
variablee (n).

A key idea of scalable extensibility is to extend the usual class
extension mechanism to allow to inherit not only fields and meth-
ods but also member classes, which can befurther extended. For
example, by the definition of the new group classCWGraph (a class
for graphs of colored nodes and weighted edges) below

class CWGraph extends Graph{
class Node {

field color;
}
class Edge {

field weight;
method connect(node1, node2) {
weight = .. ;
super.connect(node1, node2);

class AST{
field root;
class Expr extends Object{

method toString(){ return ""; }
method equal(e) { return false; }

}
class Literal extends Expr {

field val;
method toString(){ return val; }
method equal(e) { return this.val == e.val; }

}
class Plus extends Expr {

field op1, op2;
method toString(){
return this.op1.toString()+

"+"+this.op2.toString();
}
method equal(e) {
return this.op1.equal(e.op1)

&& this.op2.equal(e.op2);
}
method replaceOp1(e) { this.op1 = e; }

}
}
class ASTeval extends AST {
class Expr extends Object{

method eval(){ return 0; }
}
class Literal extends Expr{

method eval(){ return val; }
}
class Plus extends Expr{

method eval(){
return this.op1.eval() + this.op2.eval();

}
}

}

Figure 1. Simple Expressions

}
}

}

CWGraph inherits methodcreateGraph() and member classes
Node andEdge; furthermore, those member classes are extended si-
multaneously with new fields and methods such ascolor, weight,
and overridingconnect(). Hence, an instance ofCWGraph.Edge
has three fields:

var e = new CWGraph.Edge(..);
.. e.weight .. e.src .. e.dst ..

This extension mechanism is meant to work at any level of depth
in the structure of nesting. IfGraph.Edge itself defines member
classesA and B, then CWGraph.Edge.A and CWGraph.Edge.B
automatically inherit from the original versions ofA andB inside
Graph.Edge.

In standard single-inheritance languages such as Java and
Smalltalk, the “complete” definition of a subclass is obtained by
composing all of its superclasses by taking overriding into account.
Here, the complete definition of a class is obtained byrecursively
composing enclosing classes from the top level down to the leaf of
the nesting hierarchy [10]. For example, the complete definition of
CWGraph is obtained by composingObject, Graph andCWGraph
in this order; it composesNode andEdge in Graph with those in
CWGraph, resulting in the expected group of classes.

2.2 Extension inside Group

As discussed elsewhere [12, 23], it is reasonable to expect members
of a class to extend another class. In particular, it would be useful to
allow a member class to extend from another in the same group to
express the so-called expression example [23, 27], as in Figure 1.

The group classAST has classesLiteral andPlus for con-
crete syntax tree nodes that extend a member of the same class
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Expr. Each member class is equipped with methodtoString() to
return a string representation of an abstract syntax tree. In an exten-
sionASTeval of AST, each member class is extended witheval()
for evaluation. As in the previous example,ASTeval.Plus inherits
fields op1 andop2 from AST.Plus. This schema seems to natu-
rally lead to a multiple inheritance scenario:ASTeval.Plus actu-
ally inherits fromASTeval.Expr andAST.Plus, and both of these
inherit fromAST.Expr—thus leading to a typical diamond struc-
ture. Notice that, while inheriting fromASTeval.Expr is explicit
through theextends clause, inheriting fromAST.Plus is implicit,
as it is due to the enclosing group extension.

As argued also in Nystrom et al. [23], however, we can avoid
problems that typically happen in ordinary multiple-inheritance
languages by hierarchical, recursive composition described above.
To obtain a complete definition ofPlus in ASTeval, for example,
the top-levelASTeval is first composed withAST, resulting in
member classes each of which is composed with the member class
of the same name inAST. Then, the complete definition ofPlus is
finally obtained by composingExpr and Plus in the composed
ASTeval. As a result, priority is given to properties implicitly
inherited rather than to explicitly inherited ones.

Note that in general, deeper nesting structures might lead a class
to inherit from more than two classes, but the above discussion
naturally extends to such cases, as formalized in Section 4.

3. Variant Path Types
Built on top of this language fragment with class nesting and
hierarchical composition, we introduce variant path types that allow
to flexibly express a number of interesting relationships between
classes in a group.

3.1 Absolute vs. Relative Path Types

The ability to automatically inherit member classes (in general a
whole structure of nesting) is not sufficient per se to provide a
true scalable extensibility mechanism in a statically typed setting.
If some relationship exists between members inside a group, e.g.,
in Graph we have that instances of memberEdge should hold
a reference to an instance of memberNode, then we want it to
be preserved through extension, that is, the same relation must
automatically hold in classCWGraph as well. More concretely,
we may require instances ofGraph.Edge to hold references to
instances ofGraph.Node, and instances ofCWGraph.Edge to
hold references to instances ofCWGraph.Node, as also argued
in Ernst [11]: in other words, cross-group reference such as an
instance ofCWGraph.Node being a source node ofGraph.Edge
must be disallowed. However, a naive type system as in Java fails
to express such an invariant: if we declaresrc anddst to have type
Graph.Node, then those fields would be inherited with the same
type, resulting in cross-group reference.

To express such relationship, we introduce a new kind of types
called relative path types[17], which refer to other classes in
a “relative” way from the class where that type appears (as in
relative path expressions in the UNIX file system.) Examples of
relative path types areThis, This.A, This.A.B, ^This, ^^This,
^This.A. Type This means “the current class”—it is found in
other languages [23, 4] with a different name such asMyType[2].
Analogously, typeThis.A means “memberA inside the current
class”, andThis.A.B “memberB inside memberA inside current
class”. Typê This means “the group of the current class” (or “the
enclosing class of the current class”), type^^This “the group of
the group of the current class”, and so on. Finally,^This.A is
“memberA inside the group of the current class”, which is a type
used by a class to denote a member of its same group. A general
form ^ · · · ^This.C1.C2. · · · .Cn of relative path types is hence

class Graph {
class Node {

^This.Edge[] es=new ^This.Edge[10];
int i=0;
void add(^This.Edge e) { es[i++] = e; }

}
class Edge {

^This.Node src, dst;
void connect(^This.Node s, ^This.Node d) {
src = s; dst = d;
s.add(this); d.add(this);

} }
..
This.Node startNode;
boolean containsNode(This.Node n){..}
boolean containsEdge(This.Edge n){..}

}
class CWGraph extends Graph {
class Node {

Color color;
}
class Edge {

int weight;
void connect(^This.Node s, ^This.Node d) {
weight = f(s.color, d.color);
super.connect(s, d);

} }
}

Figure 2. Graph andCWGraph Classes

understood as first going upk times in the nesting structure (k is the
number of “̂ ”), and then going down through pathC1.C2.. . ..Cn.

Going back to the graph example, the intra-group relation-
ship betweenEdge and Node is expressed by makingEdge us-
ing type^This.Node, which meansGraph.Node in the class of
Graph.Edge, andCWGraph.Node in the class ofCWGraph.Edge.
Figure 2 shows a complete graph example written in our lan-
guage. Here, nodes hold a reference to the array of edges of type
^This.Edge and edges hold two references to source and desti-
nation nodes of typê This.Node to express they are from the
same kind of graph. In the classCWGraph, types of those fields are
inherited as written in the superclass and they now refer toEdge
and Node in CWGraph. This example clarifies the need to disal-
low cross-group references: methodconnect() invoked through
CWGraph must take two instances ofCWGraph.Node, otherwise
accessing fieldcolor on them would fail.

As seen in previous section, relative path types are coupled with
types of the kindC1. · · · .Cn—which we callabsolute path types,
since they denote a certain class independently of the position
where such a type is used.

A natural way to exploit the class structure seen above through
absolute types is as follows:

Graph g = new Graph(.. );
..
Graph.Node n = g.startNode;

CWGraph.Edge e;
CWGraph.Node n1,n2;
..
e.connect(n1, n2);

Notice that the type ofstartNode is declared to beThis.Node
and accessed through the absolute path typeGraph yields
type Graph.Node by substituting the receiver typeGraph
for This. Similarly, the argument types ofe.connect() be-
comesCWGraph.Node by replacing^This in the declared type
^This.Node with CWGraph, which is a prefix of the receiver type
CWGraph.Edge.

3.2 Exactness for Type Safety

It is very well known that scalable extensibility suffers from the
covariance problem: in the standard framework of “inheritance is
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subtyping” of mainstream object-oriented languages, it is not safe
to use typeThis (and some other relative path type) in certain
places such as a method argument type.

In our graph example, although classCWGraph inheritsGraph
and classCWGraph.Node implicitly inherits fromGraph.Node, as-
suming naivelyCWGraph to be a subtype ofGraph or similarly
CWGraph.Node to be a subtype ofGraph.Node will break sound-
ness of the type system as the following code reveals:

Graph.Node n1 = new Graph.Node(..);
Graph.Node n2 = new Graph.Node(..);

Graph.Edge e = new CWGraph.Edge(..);
e.connect(n1,n2); // Unsafe call

Graph g = new CWGraph(..);
Graph.Edge e2 = g.startNode.es[0];
e2.connect(n1,n2); // Also unsafe

Since the code fragment above is trying to connect aCWGraph.Edge
to two Graph.Nodes, the call toconnect() causes the attempt to
access fieldcolor to a node of typeGraph.Node, which does
not have it! Actually, a similar situation occurs only by allowing
subtyping betweenCWGraph andGraph as the last three lines show.

To solve this problem, some language mechanism is required
to ensure that the classes ofe, n1, and n2 are members of the
same group. The solution adopted in JX relies on what they call
dependent classes and immutable variables—see Section 5 for a
detailed discussion. We instead rely on a simpler solution of exact
types [5, 3, 4], briefly reviewed below.

An exact type denotes instances of a single class, excluding any
of its subclasses, thus also plays a role of run-time types of objects.
We might use the tentative notation@(A) to mean an exact type
corresponding to the class designated by the absolute path typeA:
for example, exact type@(Graph.Node) consists only of instances
of classGraph.Node. On the other hand, a typeGraph.Node,
which is said to beinexact, includes instances of classGraph.Node
and its subclasses, explicit or implicit.2 A method taking a rel-
ative path type such asconnect() cannot be invoked on inex-
act Graph.Edge, as we do not know whether an actual instance
belongs to the groupGraph or CWGraph. Thus, invocation of a
method taking a relative path type is allowed only when the re-
ceiver type is exact; the argument type obtained by replacingThis
(or ^ · · · ^This) will also be considered exact. In this sense,This
(possibly with^) is always exact.

By using exact types, the type system can reject the example
above: invocation ofconnect() on inexact typeGraph.Edge is
prohibited. If the type ofe were declared to be@(Graph.Edge) so
thatconnect() can be invoked: the assignment

@(Graph.Edge) e = new CWGraph.Edge(..);

before the invocation would be prohibited because@(Graph.Edge)
is not a supertype of@(CWGraph.Edge). (Expressionsnew will be
given exact types since the class is known.)

3.3 Exact and Inexact Qualifications and Subtyping

In the above section,@ was treated as an operator to absolute path
types. However, in our setting, we have found that it is more natural
to consider that@ is rather a new kind of qualification in addition
to ., in order to control the degree of exactness in a more fine-
grained manner! So, for classAST.Expr, say, variant path types
now feature four kinds of types: afully exact type @AST@Expr
(which was written@(AST.Expr) above),partially inexacttypes
.AST@Expr and@AST.Expr, and usual.AST.Expr. We call the
“dot” inexact qualificationand the “@” exact qualification. Here,@

2 Note that the same notation “Graph.Node” is used sometimes to denote
a singleclassnamedNode nested inGraph and sometimes to denote an
inexacttype.

at the head can be considered an exact qualification over the top
level, or package. An inexact qualification over the top level can
be omitted for syntactic analogy with Java, writing e.g.AST.Expr
instead of.AST.Expr. ( In the formal calculus introduced in the
next section, even “the top level” will be made explicit as the
symbol / and, for example,AST.Expr will be formally written
/.AST.Expr.)

The intuition behind a type like@A.B is as “the common
supertype of all the members that extendsB inside classA”
(@A@B included). So, type@AST.Expr is a common supertype of
@AST@Expr, @AST@Literal, and @AST@Plus. Similarly, A@B is
read as “the common supertype of memberB in the groupA or its
subclasses” (@A@B included). So,AST@Expr is a common supertype
of @AST@Expr and@ASTeval@Expr but not@AST@Literal. Fig-
ure 3 shows the subtyping hierarchy for abstract syntax nodes. The
name “variant path types” comes from the two kinds of qualifica-
tions, which introduce different variance with respect to the simple
class name after qualification: symbol@ acts as invariant—T@D is a
subtype ofT@E only whenD = E—and. acts as covariant—T.D is
a subtype ofT.E whenD extendsE (inside the class ofT).

Now, dots in relative path types are also considered inexact qual-
ification: for instanceThis.B would be “the common supertype
of all the members that extendsB inside the current class”, and
^This.B “the common supertype of all the members that extends
B inside the enclosing class”. Thus, typeThis.Expr used inside
the code of classAST would denote the set of all nodes of the cur-
rent version of abstract syntax tree. Now,AST with type annotations
can be written as follows:

class AST {
class Expr {..}
class Literal extends Expr{..}
class Plus extends Expr{

^This.Expr op1, op2;
String toString(){
return this.op1.toString()

+ "+" + this.op2.toString();
}
boolean equal(This e){

return this.op1.equal(e.op1)
&& this.op2.equal(e.op2);

}
void replaceOp1(^This.Expr e) {

this.op1 = e; return;
}

}
}

Since type@AST.Expr is a common supertype to all kinds of
expressions ofAST, it is clear from the substitutability principle that
it should provide a more restricted access to its methods and fields
than@AST@Expr. In this case, sinceequal() takes a relative path
typeThis, it cannot be invoked on@AST.Expr as the receiver type
is not exact. However, a method taking a relative path type may
be invoked on a (partially) inexact type. For example replaceOp1()
requires the argument to be any expression (hence inexact.Expr)
that belongs to the same group (hence^This). So, this method
can be invoked on both@AST@Plus and@AST.Plus. The rule of
thumb is that a method taking a relative path type can be invoked
when the type replacinĝ· · · ^This is exact: in this case,̂This in
^This.Expr is replaced with exact@AST, a prefix of@AST.Plus.

Remark: One might want to usêThis@Edge and^This@Node
rather than̂ This.Edge and^This.Node in the graph example
above. The choice would not matter in this particular code because
nested classesNode andEdge do not have a binary method (such as
equal() taking an argument of typeThis). If Node hadequal(),
invoking it insideconnect() on s or d would be prohibited be-
cause the type is (partially) inexact. In such a case, their type must
be^This@Node, which is fully exact.

In Proceedings of FOOL/WOOD’07, 20 January 2007, Nice, France. 4 2006/12/22



AST.Expr

@AST.Expr

44

AST@Expr

OO

@ASTeval.Expr

kk

@AST@Expr

OO 44

@ASTeval@Expr

OOkk

oo

@AST@Literal

>>

44jjjjjj
@AST@Plus

__

iiSSSSSS
@ASTeval@Literal

::

33gggggggg
hh @ASTeval@Plus

cc

kkVVVVVVV
ii

Figure 3. The rich subtyping hierarchy for the expression example. Dotted arrows represent subtyping while solid arrows represent
inheritance, which isnot subtyping.

3.4 Parametric Methods for Group-Polymorphic Methods

One of the central ideas in family polymorphism [11] is that it
should be possible to develop functionalities that can work uni-
formly over different families. Recasting it to our framework, it
means that we should be able to write methods accepting as formal
arguments instances of members of the same group, where different
invocations may be concerned about different groups.

As an example, we consider the methodconnectAll() that
takes as input an array of edges and two nodes ofany group (of
graphs) and connects each edge to the two nodes. We achieve it by
adding parametric methods in the style of Java 5.0 to our language,
but with new features ofexact type variableswith qualification.
More concretely, methodconnectAll() is written as follows:

<exact G extends Graph>
static void connectAll(G@Edge[] es,

G@Node n1, G@Node n2) {
for (int i: es) {
es[i].connect(n1,n2);

}
}

MethodconnectAll() is defined as parametric in an exact type
variableG—which represents the group used for each invocation—
with upper-boundGraph; and the arguments are of typeG@Edge[],
G@Node andG@Node, respectively. It can be invoked as follows:

@Graph@Edge[] ges = .. ;
@Graph@Node gn1 = .. , gn2 = .. ;
@CWGraph@Edge[] ces = .. ;
@CWGraph@Node cn1 = .. , cn2 = .. ;

<@Graph>connectAll(ges, gn1, gn2); // OK
<@CWGraph>connectAll(ces, cn1, cn2); // OK
<@Graph>connectAll(ces, gn1, gn2);

// compile-time error
<Graph>connectAll(ces, gn1, gn2);

// compile-time error

In the first invocation of the example code, instantiation ofG with
@Graph is specified, hence edges and nodes of familyGraph can
be passed, and similarly in the second invocation forCWGraph. The
third invocation is not well typed, asces has type@CWGraph@Edge,
which does not belong to the group@Graph. (In other words, it is
not a subtype of@Graph@Edge.) Finally, the last one is not well
typed, either, since an inexact typeGraph is passed to an exact
type variable. Notice that the introduction of exact type variables is
crucial: connect() is allowed to be invoked in the method body
exactly for the reason thatG is an exact type and, if the fourth
invocation were allowed, it would lead to unsoundness.

Finally, as developed in our previous work [17], a type inference
mechanism can also be designed by extending that in Java 5.0,

so that the instantiation of type variables can be automatically
inferred—it is left for future work.

4. Formalizing Variant Path Types
In this section, we formalize the ideas described in the previous sec-
tion as a small core calculus called FJpath based on Featherweight
Java [16]. What we model here includes nested classes with hi-
erarchical composition, variant path types, and parametric meth-
ods only with exact type variables, as well as the usual features of
FJ, that is, fields, object instantiation, and recursion bythis. In
FJpath, a nested class can extend eitherObject, which is an empty
class, or another class in the same group, though some other lan-
guages [19, 23] allow a more liberal style of inheritance. We drop
typecasts since one of our points is to show scalable extensibility
is possible without resorting to typecasts, which are used to get
around restrictions imposed by a naive type system. We assume
every type variable to be exact for simplicity and hence drop the
exact keyword; non-exact type variables would be easy to add.

4.1 Syntax

The abstract syntax of types, class declarations, method declara-
tions, and expressions is given in below. Here,n is a natural num-
ber (0 or positive integers); the metavariablesC andD range over
(simple) class names;X andY range over (exact) type variables;S,
T, U, andV range over types;f andg range over field names;m
ranges over method names; andx ranges over variables.

A ::= / | A@C run-time types
E ::= / | Xn | E@C exact types
T ::= / | Xn | T@C | T.C types
L ::= class C / C { T f; L M } classes
M ::= <X/T>T m(T x){return e;} methods
e ::= x | e.f | e.<E>m(e) | new A(e) expressions

Following the custom of FJ, we put an over-line for a possibly
empty sequence. Furthermore, we abbreviate pairs of sequences in
a similar way, writing “T f;” for “ T1 f1;. . .; Tn fn;”, where
n is the length ofT and f, and “this.f=f;” as shorthand for
“this.f1=f1;. . .;this.fn=fn;” and so on. Sequences of field
declarations, parameter names, method definitions, nested class
definitions are assumed to contain no duplicate names. We write
the empty sequence as•, denote the length of a sequence using
| · | and concatenation of sequences using a comma. Unlike the
previous section, we make the top level explicit as/ in the formal
syntax but we often abbreviate/@C to @C and/.C to C.

Run-time types, which represent classes from which objects
are instantiated, are also called absolute path types, while types
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starting withXn, which corresponds tô.. ^X (with ^ n times) in
the previous section, are called relative path types. Here, we extend
the prefixing operation fromThis to all type variables. Also note
that for notational convenience we use absolute path types fornew
expressions and names of classes. A qualification of the form@C is
called exact while.C is called inexact. In particular, a type without
any inexact qualification is called an exact type, ranged over byE
as shown above. In what follows, we use the notationTn to drop
the lastn qualifications fromT; it is defined by:

T0 = T

(Xn)m = Xn+m

(T@C)n = Tn−1 (n > 0)
(T.C)n = Tn−1 (n > 0)

Note that(·)n is an operation on types whileXn is just a syntactic
entity. By using the prefixing operation, (simultaneous) substitution
[T/X] of types for type variables is defined as follows:

[T/X]/ = /
[T/X]Xn

i = Tn
i

[T/X](S@C) = ([T/X]S)@C
[T/X](S.C) = ([T/X]S).C

Note thatXn is replaced with the corresponding prefix ofT. We also
use a notationexact(T) (inexact(T), resp.) to denote types in which
all inexact (exact, resp.) qualifications inT are replaced by exact
(inexact, resp.) ones. We include/ (read “top-level”) without any
qualification mostly for technical convenience and, as seen in rules
for well-formed types and typing,/ by itself cannot appear in any
program texts.

A class declaration consists of its name, the simple name of
its superclass, field declarations, methods, and nested classes. The
symbol / is read “extends.” A method declaration can be pa-
rameterized by type variablesX, which we assume to be exact for
simplicity—it is easy to extend the language to inexact type vari-
ables. Since the language is functional, the body of a method is a
singlereturn statement. An expression is either a variable, field
access, method invocation, or object creation. We assume that the
set of (type) variables includes the special variablethis (This,
resp.), which cannot be used as the name of a (type, resp.) parame-
ter to a method.

A class tableCT is a finite mapping from run-time typesA to
(top-level or nested) class declarations and is assumed to satisfy
the following sanity conditions to identify a class table with a
set of top-level classes: (1)CT(A@C) = class C .. for every
A@C ∈ dom(CT); (2) if CT(A@C) has an inner class declaration
L of nameD, thenCT(A@C@D) = L; and (3)Object 6∈ dom(CT).
A program is a pair(CT, e) of a class table and an expression. To
lighten the notation in what follows, we always assume afixedclass
tableCT.

4.2 Hierarchical Composition

As discussed in Section 2, a complete definition of a nested class
is obtained by propagating composition of enclosing classes in a
top-down manner. We define a functionclasses(A) to list up nested
classes insideA after hierarchical composition ofA. It requires the
following auxiliary operatorL1<+L2 to compose a superclassL1

with a subclassL2:

class C / E{T f; L1 M1} <+ class C / E′{U g; L2 M2}
= class C / E′ {T f; U g; (L1<+L2) (M1<+M2)}

Here, L1<+L2 denotes the set union of classes fromL1 and L2

where classes of the same name are recursively composed by<+.
Similarly,M1<+M2 denotes the set union of methods fromM1 andM2

where methods inM2 have priorities over the method of the same
name inM1. Their straightforward definitions are omitted here for

brevity. Here, there is no condition onE andE′ for the composition
to be well defined but, in a well-typed program,E is expected to be
a subclass ofE′.

The definition of functionclasses(A) is in Figure 4: the first rule
says thatObject has no nested classes and the second that/ is
the top-level. The third rule means that nested classes inA@C are
obtained by composing nested classes inC in classes(A) with those
in its superclassA@D. Note thatL are also the result of composition
till the depth of the enclosing classA.

For example, consider the following FJpath classes:

class AST extends Object {
class Expr extends Object {

T m() { return e_1; }
}
class Lit extends Expr {
}
class Plus extends Expr {

T m() { return e_3; }
}

}
class ASTE extends AST {
class Expr extends Object {
}
class Lit extends Expr {

T m() { return e_5; }
}
class Plus extends Expr {

T m() { return e_6; }
}

}

Then, classes(/@ASTE) returns nested classesExpr, Lit, Plus
obtained by composing ones insideASTE and its superclassAST,
i.e.,

class Expr extends Object {
T m() { return e_1; }

}
class Lit extends Expr {
T m() { return e_5; }

}
class Plus extends Expr {
T m() { return e_6; }

}

Here, methodm in class@AST@Plus has disappeared as it is over-
ridden by one in class@ASTE@Plus, which implicitly extends
@AST@Plus.

Thanks toclasses(A), it is now easy to define functions to look
up fields and methods from a given class name. The definitions
of lookup functions are also in Figure 4. Functionfields(T, A),
which is similar toclasses(T, A), enumerates all field names ofA
(and its superclasses) with their types, which are resolved with the
first argument, which is usually the type of the receiver. Similarly,
mtype(m, A) returns the signature of methodm in A.

Now, it is fairly easy to read off how class bodies are linearized,
i.e., in what order members are looked up: for example, methods
of an instance of@ASTE@Lit will be searched in@ASTE@Lit,
@AST@Lit, @ASTE@Expr, @AST@Expr in this order.

4.3 Type System

The main judgments of the type system consist of one for type
equivalence∆ ` S ≡ T, one for matching∆ ` E1 <# E2, one for
subtyping∆ ` S <: T, one for type well-formedness∆ ` T ok, and
one for typing∆;Γ ` e : T. The rules are given in Figures 5 and
6. Here,∆, calledbound environment, is a finite mapping written
X<:T from type variablesX to typesT and records declarations
of type variables with their respective upper bounds. Similarly,
Γ, called type environment, is a finite mapping writtenx:T from
variablesx toT and records declarations of method parameters with
their respective types. As seen later,∆ usually containsThis<:T,
in whichT represents the class where the judgment is made.

Following the custom of FJ [16], we abbreviate a sequence of
judgments in the obvious way:∆ ` S1 <: T1, . . . ,∆ ` Sn <: Tn

In Proceedings of FOOL/WOOD’07, 20 January 2007, Nice, France. 6 2006/12/22



classes(A)

classes(Object) = • (L are all top-level classes)
classes(/) = L

class C / D {.. L.. } ∈ classes(A) classes(A@D) = L′

classes(A@C) = L′<+L

fields(A)

fields(Object) = •

class C / D {T f; .. } ∈ classes(A)

fields(A@C) = fields(A@D), T f

mtype(m, A)

class C / D {.. M } ∈ classes(A) <X/U>S0 m(S x){ .. } ∈ M

mtype(m, A@C) = <X/U>S→S0

class C / D {.. M } ∈ classes(A) m 6∈ M mtype(m, A@D) = <X/U>S→S0

mtype(m, A@C) = <X/U>S→S0

Figure 4. FJpath: Lookup Functions

to ∆ ` S <: T (similarly for type equivalence and matching);
∆ ` T1 ok, . . . , ∆ ` Tn ok to ∆ ` T ok; and∆;Γ ` e1:T1,
. . . ,∆;Γ ` en:Tn to ∆;Γ ` e:T.

4.3.1 Type Equivalence

The judgment∆ ` S ≡ T can be read “typeS is equivalent toT
under∆.” The first three rules say that it is indeed an equivalence
relation, and the last two that it is a congruence. The key rule is the
fourth rule, which says that if the upperbound of a type variable is
exact, then the two types are indeed equivalent. The fifth rule means
that if Xn is equivalent to an exact typeE.C, then its enclosing class
Xn+1 also hasC and they are equivalent: for example,

X <: @Graph@Node ` X ≡ X
1
@Node

can be derived.

4.3.2 Matching

The subtyping relation will be defined by using the inheritance
relation, which is formalized as matching here. The judgment∆ `
E1 <# E2 can be read “exact typeE1 matchesE2” or simply “E1

extendsE2.” So, the matching relation is defined essentially as the
transitive closure of type equivalence, as seen in the first two rules.
The third rule means that, ifX is assumed to be a subtype ofT, then
it must extendexact(T) whatever it is instantiated with. The fourth
rule is similar to the fifth rule for type equivalence: for example,
the matching judgment

This <: Graph.Node ` This <# This
1
@Node

can be derived by this rule. The second last rule deals with class
extension.

4.3.3 Subtyping

The judgment form for subtyping∆ ` S <: T can be read “S
is subtype ofT under ∆.” As usual, subtyping is reflexive and

transitive and a type variable (with some prefixing) is a subtype
of (the corresponding prefix of) its declared upper bound. The
third last rule intuitively means that a type denoting a nested class
C exactly is included in a type denoting a nested classC and
its subclasses. The second last rule might look counterintuitive
since exact qualification works covariantly. Note that, however,
if T is not exact, the resulting typeT@C is not exact, either. For
example,@ASTeval.Expr, which includes all kinds of expressions
in ASTeval.Expr, is a subtype ofAST.Expr, which includes all
kinds of expressions inAST andASTeval. The last rule roughly
means that inexact types are related if one inherits the other—
matching is used in this rule.

4.3.4 Type-Wellformedness

The judgment form for well formed types is∆ ` T ok, read as “T
is well formed under∆.” A type is well formed when the class that
the type points to inA exists. Even when the class of a given name
is not in the domain of the class table, it may exist due to nested
inheritance, hence the functionclassesis used in the last two rules.

4.3.5 Typing

The typing judgment formΓ ` e : T is read “expressione is given
type T underΓ.” The typing rules are shown in Figure 6; readers
who are familiar with languages with matching [2], in particular
LOOJ [4], will notice some similarities. The key rules areT-FIELD
andT-INVK . The ruleT-FIELD means that the type of field access
e0.fi is obtained by looking up field declarations from the class
that matches the receiver type. Note that, iffi’s type is declared to
be relative, thenThisi will be replaced with the corresponding pre-
fix of the receiver type: for example, iffields(@CWGraph@Node) =
This1@Edge edg andΓ = x : @CWGraph@Node, y : This1@Node,
then

This <: CWGraph.Node, . . . ; Γ ` x.edg : @CWGraph@Edge and
This <: CWGraph.Node, . . . ; Γ ` y.edg : This1@Edge.
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∆ ` S ≡ T

∆ ` T ≡ T
∆ ` S ≡ T

∆ ` T ≡ S

∆ ` S ≡ T ∆ ` T ≡ U

∆ ` S ≡ U

X<:T ∈ ∆ Tn is exact
∆ ` Xn ≡ Tn

∆ ` Xn ≡ E@C

∆ ` Xn ≡ Xn+1@C

∆ ` S ≡ T

∆ ` S@C ≡ T@C

∆ ` S ≡ T

∆ ` S.C ≡ T.C

∆ ` E1 <# E2

∆ ` E1 ≡ E2

∆ ` E1 <# E2

∆ ` E1 <# E2 ∆ ` E2 <# E3

∆ ` E1 <# E3

X<:T ∈ ∆
∆ ` Xn <# exact(Tn)

∆ ` Xn <# E@C

∆ ` Xn <# Xn+1@C

∆ ` E <# A class C / D {.. } ∈ classes(A)
∆ ` E@C <# E@D

∆ ` E1 <# E2

∆ ` E1@C <# E2@C

∆ ` S <: T

∆ ` S ≡ T

∆ ` S <: T

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U

X<:T ∈ ∆
∆ ` Xn <: Tn

∆ ` Xn <: T.C

∆ ` Xn <: Xn+1.C
∆ ` T@C <: T.C

∆ ` S <: T

∆ ` S@C <: T@C

∆ ` S <: T ∆ ` exact(S)@C <# exact(T)@D
∆ ` S.C <: T.D

∆ ` T ok

∆ ` Object ok
X<:T ∈ ∆ ∆ ` Tn ok

∆ ` Xn ok
class C / D {.. } ∈ classes(/)

∆ ` C ok

∆ ` T ok ∆ ` exact(T) <# A class C / D {.. } ∈ classes(A)
∆ ` T@C ok

∆ ` T ok ∆ ` exact(T) <# A class C / D {.. } ∈ classes(A)
∆ ` T.C ok

Figure 5. FJpath: Matching, Subtyping, and Type Well-formedness Rules

In this way, accessing a field of relative path type gives a relative
path type only when the receiver is also given a relative path type.

The first line means that the type of the receiverT0 matches
(i.e., inherits) a classA that has methodm with the signature
<X/U>T→S0. The second and third lines roughly mean that the
actual type arguments must be subtypes of the corresponding up-
perboundsU and the types of the actual value arguments must be
subtypes of the corresponding formal; the substitution is applied
sinceUi may includeXi, . . . , Xi−1 andT may includeX. As dis-
cussed in the last section, binary methods can be invoked only
when the receiver type is exact and, in general, prefixedThis must
be exact. For example, assumemtype(@Graph@Edge, connect) =
(This1@Node, This1@Node)→ void. Then

·; x : @Graph@Edge, y : @Graph@Node ` x.connect(y,y) : void

should be derived but not

·; x : Graph.Edge, y : Graph@Node ` x.connect(y,y) : void

In order to express this condition, we use another substitution oper-
ator[T/@X], which requiresXn in T be replaced with an exact type.3

The definition, which is omitted here, is derived from that of[T/X]
by imposing a side condition “Tn

i is exact” on the second clause.
Thus,[Graph.Edge/@This]This1@Node is not well defined, mak-
ing the second judgment above non-derivable. Note that, even if
the receiver typeT0 contains inexact qualification,[T0/@This]

3 This requirement is essentially the same asexactness preservation[24].

may succeed as in[@Graph.Edge/@This1@Node]This1@Node =
@Graph@Node. So,

·; x : @Graph.Edge, y : Graph@Node ` x.connect(y,y) : void

is derivable.
The judgment for methods is of the form̀ M ok in A, read

“methodM is ok in A.” The rule T-METHOD checks whether the
method body is well typed, provided thatthis is of type This
and that formal type and value parameters are given declared up-
per bounds and declared types, respectively.This is bounded by
inexact(A), whereA is the class name in which the method is de-
clared, since the method, which may be inherited to subclasses of
A, has to work for any subclass ofA. Like FJ, the signatures of
overriding methods must be identical with the overridden, but this
condition will be checked byT-CLASS (unlike FJ).

The judgment for classes is of the form̀L ok in A, read “class
L is ok in A.” The ruleT-CLASS means that a class is well formed
if (1) its superclass, field types, nested classes, and methods are all
well formed; (2) it extendsObject—in other words, there is no
cycle in the inheritance relation; (3) defined methodsM correctly
override ones inherited from the superclass; and (4) nested classes
L correctly override those inherited from the superclass. For the
condition (4), another judgment̀L overridesL′ in A is introduced
and it is checked by the second last rule of Figure 6 that methods in
L and classes further nested inL correctly override those inL′. Note
that Ls in the ruleT-CLASS are not necessarily class definitions
in the class table; rather, they are obtained by combining nested
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∆;Γ ` e : T

∆; Γ ` x : Γ(x) (T-VAR)

∆;Γ ` e0 : T0 ∆ ` exact(T0) <# A fields(A) = T f

∆; Γ ` e0.fi : [T0/This]Ti
(T-FIELD)

∆;Γ ` e0 : T0 ∆ ` exact(T0) <# A mtype(m, A) = <X/U>T→S0

∆ ` E ok ∆ ` E <: [E/X][T0/@This]U
∆;Γ ` e : S ∆ ` S <: [E/X][T0/@This]T

∆;Γ ` e0.<E>m(e) : [E/X, T0/This]S0
(T-INVK )

∆ ` A0 ok fields(A0) = T f ∆;Γ ` e : S ∆ ` S <: ([A0/This]T)

∆; Γ ` new A0(e) : A0
(T-NEW)

` M ok in A

∀i ∈ 1..|U|.(This<:inexact(A), X1<:U1, . . . , Xi−1<:Ui−1 ` Ui ok)
∆ = This<:inexact(A), X<:U

∆ ` T0, T ok ∆; this : This, x : T ` e : S0 ∆ ` S0 <: T0

` <X/U>T0 m(T x){ return e; } ok in A
(T-METHOD)

` L overridesL′ in A

` A@D1 <# A@D2ţ
for any<X/U>S0 m(S x){.. } ∈ M,
if <Y/U′>S′0 m(S′ y){.. } ∈ M′, then[X/Y](U′, S′0, S′) = U, S0, S

ű

for anyD ∈ (dom(L) ∩ dom(L′)), ` L(D) overridesL′(D) in A@C

` class C / D1 { T f; L M } overridesclass C / D2 { U g; L′ M′} in A

` L ok in A

` A@C′ ok ` A@C′ <# Object
This<:inexact(A@C) ` T ok ` L ok in A@C ` M ok in A@Cţ

for any<X/U>S0 m(S x){.. } ∈ M,
if mtype(m, A@C′) = <Y/U′>S′→S0

′, then[X/Y](U′, S0
′, S′) = U, S0, S

ű

classes(A@C′) = Ls

for anyD ∈ (dom(L) ∩ dom(Ls)),` L(D) overridesLs(D) in A@C

` class C / C′ { T f; L M } ok in A
(T-CLASS)

Figure 6. FJpath: Typing Rules

classes in all superclasses ofA@C. Also, Ls are extended byL
implicitly—theextends clauses ofL do not refer toLs; this is why
valid method overriding is checked iǹL overridesL′ in A.

4.4 Operational Semantics

The operational semantics is given by the reduction relation of the
form e −→ e′, read “expressione reduces toe′ in one step.” We
require another lookup functionmbody(m, A), of which we omitted
the obvious definition, for the method body with formal (type)
parameters, written<X>(x)e, of given method and class names.

The reduction rules are given below. We write[d/x, e/y]e0 for
the expression obtained frome0 by replacingx1 with d1, . . . , xn

with dn, andy with e. There are two reduction rules, one for field
access and one for method invocation, which are straightforward.
The reduction rules may be applied at any point in an expression,

so we also need the obvious congruence rules (ife −→ e′ then
e.f −→ e′.f, and the like), omitted here. We write−→∗ for the
reflexive and transitive closure of−→.

fields(A) = T f

new A(e).fi −→ ei
(R-FIELD)

mbody(m, A) = <X>(x)e0

new A(e).<E>m(d) −→ [d/x, new A(e)/this][E/X, A/This]e0

(R-INVK )

4.5 Type Soundness

The type system is sound with respect to the operational semantics,
as expected. Type soundness is proved in the standard manner via
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subject reduction and progress [29, 16]. For brevity, we omit the
proofs, which will appear in a full version of the paper, which
will be available athttp://www.sato.kuis.kyoto-u.ac.jp/
~igarashi/papers/.

The set of values, mentioned in Theorem 2, are defined by:
v ::= new A(v), wherev can be empty.

THEOREM 1 (Subject Reduction).If ∅; ∅ ` e : T and e −→ e′,
then∅; ∅ ` e′ : T′, for someT′ such that∅ ` T′ <: T.

THEOREM 2 (Progress).If ∅; ∅ ` e : A ande is not a value, then
e −→ e′, for somee′.

5. Related Work
Nested Inheritance. The present work has emerged as an en-
hancement of language constructs for lightweight family polymor-
phism [17], with arbitrary levels of nesting, explicit inheritance be-
tween nested classes in the same group, and generalized relative
path types with inexact qualification. The resulting language design
is very close to Nystrom et al.’s JX language [23], though without
exploiting dependent types(/classes).

JX supports an extension mechanism called nested inheritance
that allows an inheritance hierarchy to be nested in another class
and such a hierarchy to be inherited and extended by extending
the enclosing class, just as our proposal. Indeed, it is very similar
how class definitions are composed. Moreover, JX allows a class to
extend another class outside the group.

Key ideas in their type system are dependent classes and pre-
fix types. Dependent classes are type expressions of the form
x.class, which meansx’s run-time class. Using dependent classes,
a methodequal would take an argument of typethis.class,
which guarantees that the run-time classes of the receiver and
the argument agree. Prefix types are usually used with dependent
classes to express an enclosing class of a dependent class. For
example,Graph[n.class] meansn.class’s innermost enclos-
ing class, which is a subclass ofGraph. By combining the fact that
inheritanceis considered subtyping, they are useful when two argu-
ments have to share the same enclosing class as inconnect all()
as in Section 3. For example, here is its variantmake loop() writ-
ten in JX

void make_loop(final Graph.Node n,
Graph[n.class].Edge e) {

n.src = n.dst = e;
}

JX’s static type system guarantees that the actual arguments’s run-
time types share the same enclosing class, which must be a sub-
class ofGraph. Since inheritance is subtyping,CWGaph.Node is a
subtype ofGraph.Node and somake loop() can be invoked with
CWGraph.Node andCWGraph.Edge. Since types now refer to ex-
pressions, the interaction with side-effects gets rather tricky; JX
poses the restriction that.class can be preceded only by a se-
quence of zero or more accesses of final fields to final variables
(includingthis) to avoid the meaning of the same dependent class
expression changes at different program points. That’s whyn is
(and must be) qualified withfinal. Although we do not formal-
ize assignments in FJpath, we expect thay can be easily and safely
added with the usual typing rule.

Instead of dependent classes, we use type variables andThis
to achieve the separation of types and expressions for ease of
typechecking. In particular, we observe that value arguments of JX
also play the role of type arguments. It will be more apparent by
comparing with the definition ofmake loop() in our language:

<exact X extends Graph.Node>
void make_loop(X n, ^X@Edge e) {.. }

Notice thatX plays the role ofn.class in the JX code. Following
howconnect all() is written is Section 3, it can also be written

<exact X extends Graph>
void make_loop(X@Node n, X@Edge e) {.. }

We believe that separating type variables gives more intuitive
method signatures, especially when parametric types are involved;
for example, ifconnect all(), which takes arrays, is to be written
in JX, the method definition seems to be something like:

void connect_all(final Graph g,
g.class.Edge[] es,
g.class.Node[] ns) {.. }

or
void connect_all(final Graph.Edge e,

e.class[] es,
Graph[e.class].Node[] ns) {.. }

which requires avalue parameterg or e, which isnot required by
the method body.

One consequence of this design of JX seems that, as opposed to
the common understanding, subtyping doesnot quite imply substi-
tutability, which we think is not very intuitive: if an expression in a
program is replaced with another, which is of a subtype of the orig-
inal, the program can become ill-typed. For example, suppose class
C, which has the subclassD, has methodequal() that takes an ar-
gument of typethis.class. Then,c.equal(c) would be well
typed under the assumption thatc has typeC. SinceD is a subtype
of C in JX, one might expect thatd of typeD would be substitutable
for c and sod.equal(c) would be also well typed but, in fact, it is
not. In our type system, subtyping is substitutability thanks to the
distinction between exact and inexact qualifications:c.equal(c)
is allowed only whenc is given an exact type@C and it can be
replaced only by another expression of the same exact type.

More recently, Nystrom, Qi, and Myers [24] have extended
JX to support the mechanism called nested intersection, which is
similar to symmetric mixin composition in Scala [26, 25]. It would
be interesting future work to add nested intersection to FJpath.

Matching. A series of work [2, 7, 6, 4] by Bruce and his col-
leagues has been addressing statically safe type systems for lan-
guages with the notion ofMyType(corresponding toThis in this
paper). As we have also discussed, even if one class extends an-
other, the object type from the former is not always a subtype of
that from the latter due to binary methods—methods whose argu-
ment types includeMyType. Instead of subtyping, they introduce
the matching relation on object types, which reflects the class hier-
archy and plays an important role in typechecking binary methods.
In the language calledLOOM [6], the notion ofhash typesof
the form#T is introduced;#T behaves as a common supertype4 of
all types that matchT but binary methods cannot be invoked on
it. Our inexact qualification can be considered a generalization of
hash types in the context of nested classes. It may be worth noting
that in some other languages of theirs [5, 3, 4], hash types are “de-
fault” (requiring no special symbols such as#) and objects types
on which binary methods can be invoked are called exact types and
written@T.

Also, they have introduced match-bounded polymorphic meth-
ods [7] to describe generic methods that work on different types
that match the same interface. Polymorphic methods in this paper
can be viewed as match-bounded polymorphic methods in disguise,
since if an exact typeE is a subtype ofT, thenE matchesexact(T).
Our choice is mainly for the sake of familiarity and uniformity with
usual subtype-bounded polymorphic methods.

4 Subtyping is not explicitly mentioned in their paper but there are typing
rules to convert from one (exact) type to its hash version and from a hash
type to another hash type which is matched by the former.
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Later, the notion ofMyTypeis extended from self-recursive ob-
ject types to mutually recursive object types, resulting in the notion
of MyGroup [5, 8, 3]. Here, mutually recursive classes are put in
a group, which is extensible just as classes, andMyGroup, which
changes its meaning along group extension, is used to express mu-
tual references among classes. In this paper, groups and classes are
unified into a single mechanism of classes, which can be arbitrar-
ily nested. Accordingly,MyTypeandMyGroupare unified into a
relative path typeThisn.

Concord [19] is another language that also has the notion of
groups andMyGroup. A main difference from the present work is
that Concord does not support nesting of groups but allows a class
in a group to extend an absolute type, a class outside the enclosing
group. It would be interesting future work to extend our language
to allow a class to extend non-siblings.

Virtual Classes. Historically, virtual classes [20] (more precisely,
virtual patterns) in Beta [21] have been very influential to much
work on the design of languages that support scalable extensibility
by using nesting structure of classes. The basic idea of virtual
classes is to allow classes to be attributes of objects just as methods,
by putting nested class definitions in another class and those nested
classes to be inherited and further extended in a subclass. Although
the original proposal was not statically type-safe, virtual classes
are useful to describe not only generic data structures but also
mutually recursive classes such as nodes and edges of graphs and
their extensions.

Ernst, who coined the term “family polymorphism,” improved
Beta’s static analysis in the development of the languagegbeta to
ensure the safety of the use of virtual classes as extensible mutually
recursive classes [11] and also higher-order hierarchies [12], which
refer to a mechanism that allows extensible class hierarchies just as
in the example ofAST in this paper.

Nested classes ingbeta are designed to be members (or at-
tributes) of an object of their enclosing class as in Beta. So, in order
to instantiate a nested class, an enclosing class has to be instanti-
ated first and then a constructor of the nested class is invoked on
the enclosing instance (that is, the instance of the enclosing class)
as in inner classes of Java [15]. Unlike Java, however, objects from
the same nested class with different enclosing instances are distin-
guished by the static analysis, making it possible to create many
copies of the same group and prevent objects from different copies
from being mixed. Scala [25, 26] and CaesarJ [22] adopt a similar
mechanism of virtual classes. From the type system point of view,
such a mechanism can be considered like dependent types [1]. In
fact, a type is a path of (immutable) field accesses followed by a
class name in the virtual class calculus [13], which modelsgbeta-
style virtual classes described above. Since there is only a single
kind of qualification for those path dependent types, it does not
seem very easy to express types for, say, all sorts of expressions
roughly corresponding toAST.Expr.

6. Concluding Remarks
We have proposed variant path types to support safe scalable ex-
tensibility. Relative path types, a natural extension ofMyTypeby
Bruce et al. in the context of nested classes, enable to describe
inter-relationship among classes in the same group, preserved by
extension of the enclosing class. Also, exact and inexact qualifica-
tions give flexible abstractions for various kinds of set of instances
with a rich subtyping hierarchy. The type system has been formal-
ized as an extension of Featherweight Java.

Other than proving subject reduction, main future work of this
research concerns evaluating the applicability to a full-blown lan-
guage such as Java. For example, it is interesting to investigate type
inference for parametric methods, which we have already done to

some degree in previous work [17]. Implementation issues are also
left for future work but we believe that the techniques described in
Nystrom et al. [23] can be applied to our proposal, as the semantics
of inheritance of our language is similar (in fact, simpler).
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pages 104–127, Jyväskyl̈a, Finland, June 1997. Springer Verlag.

[7] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL:
A type-safe polymorphic object-oriented language. In W. Olthoff,
editor,Proceedings of 9th European Conference on Object-Oriented
Programming (ECOOP’95), volume 952 ofLecture Notes on
Computer Science, pages 27–51, Aarhus, Denmark, August 1995.
Springer Verlag.

[8] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language
design: Statically type-safe virtual types in object-oriented languages.
In Proceedings of 15th Conference on the Mathematical Foundations
of Programming Semantics (MFPS XV), volume 20 ofElectronic
Notes in Theoretical Computer Science, New Orleans, LA, April
1999. Elsevier. Available throughhttp://www.elsevier.nl/
locate/entcs/volume20.html.

[9] Vincent Cremet, François Garillot, Sergueı̈ Lenglet, and Martin
Odersky. A core calculus for Scala type checking. InProc. MFCS,
Springer LNCS, September 2006.

[10] Erik Ernst. Propagating class and method combination. InPro-
ceedings of European Conference on Object-Oriented Programming
(ECOOP’99), volume 1628 ofLecture Notes on Computer Science,
pages 67–91, Lisboa, Portugal, June 1999. Springer Verlag.

[11] Erik Ernst. Family polymorphism. InProceedings of European
Conference on Object-Oriented Programming (ECOOP2001),
volume 2072 ofLecture Notes on Computer Science, pages 303–
326, Budapest, Hungary, June 2001. Springer Verlag.

In Proceedings of FOOL/WOOD’07, 20 January 2007, Nice, France. 11 2006/12/22



[12] Erik Ernst. Higher-order hierarchies. InProceedings of European
Conference on Object-Oriented Programming (ECOOP2003),
volume 2743 ofLecture Notes on Computer Science, pages 303–
328, Darmstadt, Germany, July 2003. Springer Verlag.

[13] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. InProceedings of ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL2006), pages 270–282,
Charleston, SC, January 2006.

[14] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java
Language Specification. Addison-Wesley, third edition, June 2005.

[15] Atsushi Igarashi and Benjamin C. Pierce. On inner classes.
Information and Computation, 177(1):56–89, August 2002. A special
issue with papers from the 7th International Workshop on Foundations
of Object-Oriented Languages (FOOL7). An earlier version appeared
in Proceedings of the 14th European Conference on Object-Oriented
Programming (ECOOP2000), Springer LNCS 1850, pages 129–153,
June, 2000.

[16] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ.ACM Transac-
tions on Programming Languages and Systems, 23(3):396–450, May
2001. A preliminary summary appeared inProceedings of the ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), ACM SIGPLAN Notices, volume
34, number 10, pages 132–146, Denver, CO, October 1999.

[17] Atsushi Igarashi, Chieri Saito, and Mirko Viroli. Lightweight
family polymorphism. In Kwangkeun Yi, editor,Proceedings of
the 3rd Asian Symposium on Programming Languages and Systems
(APLAS2005), volume 3780 ofLecture Notes in Computer Science,
pages 161–177, Tsukuba, Japan, November 2005. Springer-Verlag.

[18] Atsushi Igarashi and Mirko Viroli. On variance-based subtyping
for parametric types. In Boris Magnusson, editor,Proceedings of
the 16th European Conference on Object-Oriented Programming
(ECOOP2002), volume 2374 ofLecture Notes in Computer Science,
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